• Title/Summary/Keyword: Dynamic IoT network

Search Result 55, Processing Time 0.027 seconds

Why Dynamic Security for the Internet of Things?

  • Hashemi, Seyyed Yasser;Aliee, Fereidoon Shams
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • The Internet of Things (IoT) ecosystem potentially includes heterogeneous devices with different processing mechanisms as well as very complicated network and communication models. Thus, analysis of data associated with adverse conditions is much more complicated. Moreover, mobile things in the IoT lead to dynamic alteration of environments and developments of a dynamic and ultra-large-scale (ULS) environment. Also, IoT and the services provided by that are mostly based on devices with limited resources or things that may not be capable of hosting conventional controls. Finally, the dynamic and heterogeneous and ULS environment of the IoT will lead to the emergence of new security requirements. The conventional preventive and diagnostic security controls cannot sufficiently protect it against increasing complication of threats. The counteractions provided by these methods are mostly dependent on insufficient static data that cannot sufficiently protect systems against sophisticated and dynamically evolved attacks. Accordingly, this paper investigates the current security approaches employed in the IoT architectures. Moreover, we define the dynamic security based on dynamic event analysis, dynamic engineering of new security requirements, context awareness and adaptability, clarify the need for employment of new security mechanism, and delineate further works that need to be conducted to achieve a secure IoT.

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

Securing the IoT Frontier: Exploring the Limitation and Future Directions in Cybersecurity

  • Moustafa Abdelrahman Mahmoud Ahmed;Nur Arzilawati Md Yunus
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • As the Internet of Things (IoT) continues to permeate every facet of modern life, the imperative to secure this vast and dynamic frontier becomes increasingly paramount. This presents a comprehensive exploration of the challenges and opportunities inherent in safeguarding the interconnected web of IoT devices. The research critically examines the limitations of current cybersecurity measures through an extensive review of diverse topics, including IoT network performance, smart grid security, and the escalating cyber threats against critical infrastructures. A meticulous analysis of research findings underscores the need for enhanced infrastructure and ongoing research to fortify the cybersecurity mechanisms surrounding IoT objects. We underline the imperative of relentless research efforts to parry the advancing threats and leverage the promise of nascent technologies. Our findings affirm the pivotal influence of robust cybersecurity measures in crafting a resiliently connected ecosystem. The paper underscores the importance of ongoing research to address evolving threats and harness the potential of emerging technologies, reaffirming the central role of cybersecurity in shaping a secure interconnected world. In conclusion, the study emphasizes the dynamic and ever-evolving nature of cybersecurity on the IoT frontier. It unveils a complex landscape of challenges, ranging from network performance intricacies to the security concerns of critical infrastructures.

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Evolution of Industrial IoT Network Technology: Past, Present, and Future Trends (산업용 IoT 네트워크 기술의 진화: 과거, 현재, 미래 동향)

  • T.J. Park;E.H. Kim;J.S. Cha;K.S. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.20-28
    • /
    • 2023
  • Wireless communication technology has mainly been used to fulfill the demands of industrial sites at which performance is not a critical concern. However, ongoing discussions and efforts are now focused on securing core wireless communication technologies to enable the transformation or expansion of wired industrial IoT (Internet of Things) network technology into a flexible and dynamic smart manufacturing system. This paper provides an overview of current wireless industrial IoT network technology and the recent wireless time-sensitive networking technology. It outlines the challenging level of reliability required for wireless communication technology to coexist with or replace its wired counterpart in future smart manufacturing systems. Additionally, we introduce ultra-reliable time deterministic network as the core technology of wireless industrial communications and focus on its reliability and delay characteristics.

Privacy Inferences and Performance Analysis of Open Source IPS/IDS to Secure IoT-Based WBAN

  • Amjad, Ali;Maruf, Pasha;Rabbiah, Zaheer;Faiz, Jillani;Urooj, Pasha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.1-12
    • /
    • 2022
  • Besides unexpected growth perceived by IoT's, the variety and volume of threats have increased tremendously, making it a necessity to introduce intrusion detections systems for prevention and detection of such threats. But Intrusion Detection and Prevention System (IDPS) inside the IoT network yet introduces some unique challenges due to their unique characteristics, such as privacy inference, performance, and detection rate and their frequency in the dynamic networks. Our research is focused on the privacy inferences of existing intrusion prevention and detection system approaches. We also tackle the problem of providing unified a solution to implement the open-source IDPS in the IoT architecture for assessing the performance of IDS by calculating; usage consumption and detection rate. The proposed scheme is considered to help implement the human health monitoring system in IoT networks

Abbreviated ID Conflict Management Method for Efficient Data Forwarding on Dynamic IoT Networks (동적 사물인터넷에서 효율적인 데이터 전달을 위한 축약 ID의 충돌 관리 기법)

  • Son, Sanghyun;Jung, Yeonsu;Jeon, Yongsu;Lee, Seungjin;Baek, Yunju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.200-201
    • /
    • 2016
  • Recently, according to era of Internet of Things was opened, various mobile devices connected to the internet using wireless communication. Many IoT devices have limited communication performance. Thus, these devices efficiently forward data using an abbreviated ID method. However, movement of devices causes abbreviated ID confliction, and These conflict degraded network performance. Therefore it is important management of ID conflict. In this paper, we proposed an abbreviated ID conflict management method to improve the efficiency of communication in the dynamic IoT network.

  • PDF

Secure Multicast using Proxy Re-Encryption in an IoT Environment

  • Kim, SuHyun;Hwang, YongWoon;Seo, JungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.946-959
    • /
    • 2018
  • Recently interest in Internet of Things(IoT) has attracted significant attention at national level. IoT can create new services as a technology to exchange data through connections among a huge number of objects around the user. Data communication between objects provides not only information collected in the surrounding environment but also various personalized information. IoT services which provide these various types of data are exposed to numerous security vulnerabilities. If data is maliciously collected and used by an attacker in an IoT environment that deals with various data, security threats are greater than those in existing network environments. Therefore, security of all data exchanged in the IoT environment is essential. However, lightweight terminal devices used in the IoT environment are not suitable for applying the existing encryption algorithm. In addition, IoT networks consisting of many sensors require group communication. Therefore, this paper proposes a secure multicast scheme using the proxy re-encryption method based on Vehicular ad-hoc networks(VANET) environment. The proposed method is suitable for a large-scale dynamic IoT network environment using unreliable servers.

A Framework for Effectively Managing Dynamism of IoT Devices (IoT 디바이스의 동적 특성의 효과적 관리를 위한 프레임워크)

  • La, Hyun Jung;Park, Chun Woo;Kim, Soo Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.545-556
    • /
    • 2014
  • Internet of Things (IoT), one of the emerging research areas, is the computing paradigm where various things connect to the network and cooperate with their neighbors to reach common goals. Computing with IoT devices opens up a new array of opportunities for providing value-added smart services and applications to end users. That is, IoT devices play an important role of providing useful services to the users. However, the states of IoT devices are dynamically changed at runtime, which come from their mobility, network connectivity, and a battery drain problem. This dynamism results in difficulties in managing these IoT devices. In this paper, we propose a framework to manage those IoT devices with dynamism. Hence, we first derive issues from IoT devices' dynamism. And, we define a set of requirements to manage the IoT devices and present a framework to manage the device dynamism. The framework is equipped by a device discovery method, a device status monitoring method, a device selection and connection method, and a device replacement method. Finally, we verify the feasibility and effectiveness of the framework through experiments.

INFRA-RPL to Support Dynamic Leaf Mode for Improved Connectivity of IoT Devices (IoT 디바이스의 연결성 향상을 위한 동적 leaf 모드 기반의 INFRA-RPL)

  • Seokwon Hong;Seong-eun Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.151-157
    • /
    • 2023
  • RPL (IPv6 Routing Protocol for Low-power Lossy Network) is a standardized routing protocol for LLNs (Low power and Lossy Networks) by the IETF (Internet Engineering Task Force). RPL creates routes and builds a DODAG (Destination Oriented Directed Acyclic Graph) through OF (Objective Function) defining routing metrics and optimization objectives. RPL supports a leaf mode which does not allow any child nodes. In this paper, we propose INFRA-RPL which provides a dynamic leaf mode functionality to a leaf node with the mobility. The proposed protocol is implemented in the open-source IoT operating system, Contiki-NG and Cooja simulator, and its performance is evaluated. The evaluation results show that INFRA-RPL outperforms the existing protocols in the terms of PDR, latency, and control message overhead.