In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.
In the dynamic landscape of modern machine learning, Federated Learning (FL) has emerged as a compelling paradigm designed to enhance privacy by enabling participants to collaboratively train models without sharing their private data. Specifically, Distillation-based Federated Learning, like Federated Learning with Model Distillation (FedMD), Federated Gradient Encryption and Model Sharing (FedGEMS), and Differentially Secure Federated Learning (DS-FL), has arisen as a novel approach aimed at addressing Non-IID data challenges by leveraging Federated Learning. These methods refine the standard FL framework by distilling insights from public dataset predictions, securing data transmissions through gradient encryption, and applying differential privacy to mask individual contributions. Despite these innovations, our survey identifies persistent vulnerabilities, particularly concerning the susceptibility to logit inversion attacks where malicious actors could reconstruct private data from shared public predictions. This exploration reveals that even advanced Distillation-based Federated Learning systems harbor significant privacy risks, challenging the prevailing assumptions about their security and underscoring the need for continued advancements in secure Federated Learning methodologies.
수요예측은 국가와 기업의 전략수립과 효율적인 자원활용에 있어서 필수적인 사전기획요소이다. 본 논문은 이산선택모델과 확산모델을 복합적으로 고려하여 다세대 제품의 수요를 예측하였다. 이산선택모델은 정적인 관점에서 소비자들의 제품에 대한 평가를 분석하는 모델이다. 본 논문에서는 이러한 이산선택모델에 수요의 동적인 변화양상을 고려할 수 있는 확산모델을 결합하였다. 실증분석으로서 1999년에서 2005년까지의 세계 DRAM시장 수요를 예측하였다. 또한, DRAM의 가격과 기억용량에 대해 '무어의 법칙' 과 '학습곡선'을 각각 적용한 기술예측을 시도하였으며, 이를 바탕으로 보다 정교한 예측모델을 전개하였다. 제시된 모델은 산업수준의 자료를 이용하였으므로, 이산선택모델을 inversion 하여 분석을 시도하였다. 이를 통해 기존세대의 DRAM 제품에 대한 수요뿐만 아니라, 새로운 세대의 DRAM 제품에 대한 수요를 비교적 정확히 예측할 수 있었다.
This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.
본 연구에서는 중학교 3학년 수학영재 학생들이 비유클리드 쌍곡원반모형에서 정삼각형 테셀레이션을 구성하는 활동을 하면서 나타나는 사고과정을 분석하였다. 역동적 기하환경인 poincare disk. gsp 파일에서 테셀레이션을 구성하기 위해 쌍곡평면에서 도형과 변환에 대한 학습을 하였다. 쌍곡선분의 특징을 탐구하고 도형인 정삼각형의 작도와 반전 변환을 학습 한 후 작도 과정을 반복한 후 쌍곡평면에서 테셀레이션이 가능하게 되는 조건을 탐구하는 과제를 해결하였다. 학생들은 이러한 과제를 해결하며 다양한 전략적 사고과정이 나타났고, 비유클리드 기하체계를 인지하는 경험을 할 수 있었다.
현대 전투기는 정안정성 완화 개념을 적용하여 기동성과 성능을 향상시키는데, 천음속 비행영역에서는 충격파 형성과 더불어 감속기동 중 발생하는 공력중심 전방이동 현상에 의해 갑작스런 기수 들림이 발생하는 경향을 갖는다. 또한 천음속 중간 받음각 비행영역은 항공기 모델링이 어려워 모델 기반의 제어 방식은 이 문제를 해결하는데 한계를 갖는다. 이번 논문에서는 초음속 경전투기 모델을 이용하여 천음속 영역에서 감속선회 기동 중 모델 기반 증분형 동적 모델역변환 방식의 천음속 피칭모멘트 보상 제어(TPMC)와 모델과 센서를 기반으로 하는 Hybrid 증분형 동적모델 역변환(IDI) 제어의 성능을 분석하였다. 분석 결과, Hybrid 증분형 동적모델 역변환 제어는 천음속 피칭모멘트 보상 제어에 비해 빠른 초기 반응과 동등한 최대 수직가속도 제한 성능을 가지면서 조종사가 예측 가능한 비행성을 제공하여 천음속 중간 받음각 비행영역에서 하중제한 초과 방지 제어기의 성능을 크게 개선하였다.
An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.
전역 최적화 문제의 해를 유전 알고리즘을 사용하여 얻어 완전파형역산을 수행하고 층상 반무한체의 물성치를 추정하는 기법을 제안한다. 조화 수직 하중이 작용하는 층상 반무한체의 동적 응답을 측정하고, 이를 추정 물성치를 사용하여 계산된 응답과 비교한다. 응답의 추정치는 mid-point integrated finite element와 perfectly matched discrete layer를 사용하여 구성된 thin-layer model로부터 얻는다. 전역 최적화 문제의 목적 함수는 응답의 관측치와 추정치의 차이에 대한 L2-norm으로 계산된다. 유전 알고리즘을 사용하여 전역 최적화 문제의 해를 구하여 완전파형역산을 수행한다. 제안된 기법을 기본 진동 모드 뿐만이 아니라 고차 진동 모드도 우세한 다양한 층상 반무한 매질에 적용하여, 측정치가 잡음을 포함하지 않는 경우와 포함하는 경우 모두에 대해서 제안된 완전파형역산 기법은 층상 반무한체의 재료 특성을 추정하는데 적합함을 확인할 수 있다.
This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.
실시간 시스템은 서버와 같은 공유자원들에 대해서 보다 높은 우선순위 활동의 최악 블록시간(worst case blocking time)을 결정해야한다. 현재까지 분산 시스템을 위한 여러 서버 모델들이 제안되었으며 이러한 서버모델들에 우선순위 규약을 적용하여 실시간성을 높이고 있다. 본 논문에서는 RT- Mach에서 실시간성을 향상시키기 위한 새로운 모델을 제시하여 우선순위 반전 문제를 해결하기 위해 동적 스레드 관리자(dynamic thread manager) 를 제안하였다. 기존의 여러 서버 모델들과 달리 서버마다 동적 스레드 관리자를 두어 작업자 그룹내에서 유혹 스레드(idle thread)와 바쁜스레드 (busy thread ) 판별하여 적절한 스레드를 선정, 조정하고 서버로부터의 요구에 대해 최상위 우선순위를 할당하여 서버간의 우선순위 반전을 중이고 실시간성을 향상시키고자 했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.