• 제목/요약/키워드: Dynamic Interaction Prototype

검색결과 27건 처리시간 0.027초

관입깊이에 따른 석션파일 고유진동수 측정 및 분석 (The natural frequency measurement for a suction pile about the intrusion depth)

  • 이종화;김민수;서윤호;김봉기;이준신;유무성;곽대진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF

렌즈 구동을 위한 선형 초음파 전동기 설계 (Design of Linear Ultrasonic Motor for Small tong Actuation)

  • 권태성;이승엽;김수경
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF

초소형 렌즈 구동을 위한 선형 초음파 구동기 설계 (Design of a Linear Ultrasonic Actuator for Small Lens Actuation)

  • 권태성;최요한;이승엽
    • 정보저장시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

Tension Leg Platform의 동적응답에 관한 연구 (Dynamic Response of Tension Leg Platform)

  • 여운광;편종근
    • 대한토목학회논문집
    • /
    • 제5권1호
    • /
    • pp.21-30
    • /
    • 1985
  • Tension Leg Platform (TLP)이란 평행위치로부터 일정 범위내에서 움직임으로 인하여 외 력의 효과를 완화시키는 compliant 구조물인 동시에, 기인장력을 받고 있는 연직 anchor cable 이 있으므로 부력이 자중을 초과하게 되는 안정한 platform 이다. 일반적으로 부체는 해상조건이 험할수록, 그리고 수심이 깊어질수록 동요가 심해지는데 TLP는 기인장 cable로 인하여 심해에서도 비교적 동요가 작아서 최근 대수심구조물의 총아로 각광받고 있다. 일찌기 Paulling 등이 TLP 거동의 예측을 위하여 수정된 Morison 방정식을 사용하는 선형동유체력합성방법을 발표하였다. 그러나 만일 TLP의 각 부재가 Morison 방정식의 가정이 성립할 수 없을 정도로 크다면 새로운 해석이 필요하다 하겠다. 일본의 Tanaka는 이런 경우에 McCamy-Fuchs 이론의 결과치를 이용하였으나, 완전한 해석이라기 보다는 일종의 간편법이라 하겠다. 본고에서는 큰 배수용적을 가진 연직부체가 있고, 이론적 해석의 결과를 검토해 볼 수 있는 수리모형 실험 결과가 있는 Deep Oil Technology (DOT) 회사의 TLP를 대상으로 하였다. 이 TLP는 부력을 전담하고 있는 연직축대칭 원통과 이들을 연결하고 있는 세부재로 이루어져 있어 축대칭부분에는 축대칭 Green 함수를 사용하여 동유체력을 구하고 세부재는 종래의 수정된 Morison 방정식의 항력항을 선형화하여 동유체력을 구하였다. 그리하여 부재의 각 미소부분에서 구한 힘들을 TLP의 중심에 원점을 둔 좌표계로 옮겨 동적응답을 구한 것이다. 본 해석에서 부재 상호간의 작용은 무시하였으며 단지 부재간의 거리효과만 고려하였다. 따라서 사용된 좌표계는 전체 (Global) 좌표계, 지점 (Local) 좌표계 및 파랑 (Wave) 좌표계 등이었고 각 좌표계간의 변환식이 필요하였다. 전체적인 해석정도는 선형이론으므로 케이블의 강성도 역시 선형적으로 구하였으며, 앞서 언급했다시피 Morison 방정식의 비선형항인 항력항은 Fourier 해석으로 선형화 하였다. 이러한 Fourier 해석은 잘 알려져 있는 Lorentz 원리와 같다고 볼 수 있다. 세부재의 경우 접선력은 무시하였고 수입자의 운동에 의한 부채에 대한 수직력만 고려하였다. 여기서 파랑좌표계에서 지점좌표계로의 좌표변환이 주의를 요하고 있다. 이제 이렇게 구한 각 힘들을 전체좌표 계에서 6개의 자유도별로 운동방정식에 대입하면 각 자유도별 동적응답이 구하여지는 것이다. DOT TLP의 Surge mode에 대한 동적응답을 실험치와 비교하여 본 결과, 세부재에 대한 고려를 뺄 수 없음을 알 수 있었다. 이는 연직축대칭 부체의 크기가 그리 크지 않으므로 인한 것이며, TLP의 원형의 경우에는 보다 더 관성력이 지배적일 것으로 사료된다.

  • PDF