• Title/Summary/Keyword: Dynamic Fuzzy Inference

Search Result 75, Processing Time 0.029 seconds

A study on the Development of the Device for Portable Safety Diagnosis and Dynamic Characteristics Analysis of Elevator using Fuzzy Algorithm (Fuzzy 알고리즘을 이용한 엘리베이터 포터블 안전진단 및 동특성 분석장치 개발)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.123-126
    • /
    • 2000
  • An elevator system which is a essential equipment for a vertical movement of object, as a property of building, have been drove by various expenditure and purpose. Since developing electrical control technology, control systems are highly developed. An elevator equipment is expended to wide, but a data accuracy acquisition technique and safety predict technique for securing system safety is still basic level. So, objective verification for elevator confidence condition is required absolutely accuracy measurement technique. Therefore, this study is accomplished in order to conquer a method of depending on sense of a manager with a simple numeric measurement data, and construct a logical, analytical foresight system for more efficient elevator management system.

  • PDF

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

A Knowledge-Based Linguistic Approach for Researcher-Selection (학술전문가 선정을 위한 지식 기반 언어적 접근)

  • Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.549-553
    • /
    • 2002
  • This paper develops knowledge-based multiple fuzzy rules for researcher-selection by automatic ranking process. Inference rules for researcher-selection are created, then the multiple fuzzy rule system with max-min inference is applied. The way to handle for selection standards according to a certain criteria in dynamic manner, is also suggested in a simulation model. The model offers automatic, fair, and trust decision for researcher-selection processing.

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Moving object Tracking Using U and FI

  • Song, Hag-hyun;Kwak, Yoon-shik;Kim, Yoon-ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1126-1132
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (Fl) and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of Important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temperal error, We develop a fuzzy inference algorithm. Some experiments are performed 0 testify the validity and applicability of the proposed system As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.

Object Tracking Algorithm for Multimedia System

  • Kim, Yoon-ho;Kwak, Yoon-shik;Song, Hag-hyun;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.217-221
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (FI)and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temporal error, We develop a fuzzy inference algorithm. Some experiments are peformed to testify the validity and applicability of the proposed system. As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.

  • PDF

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

Stability Analysis of Fuzzy-Model-Based Controller by Piecewise Quadratic

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.169-172
    • /
    • 1999
  • In this paper, piecewise quadratic Lyapunov functions are used to analyze the stability of fuzzy-model-based controller. We represent the nonlinear system using a Takagi-Sugeno fuzzy model, which represent the given nonlinear system by fuzzy inference rules and local linear dynamic models. The proposed stability analysis technique is developed by dividing the whole fuzzy system into the smaller separate fuzry systems to reduce the conservatism. Some necessary and sufficient conditions for the proposed method are obtained. Finally, stability of the closed system with various kinds of controller for TS fuzzy model is checked through the proposed method.

  • PDF

개선된 다이나믹 프로그래밍과 품질 정보 및 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘

  • Lee, Seung-Hwan;Park, Choong-Shik;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.341-350
    • /
    • 2007
  • DNA 염기 서열 배치 알고리즘은 분자 생물학 분야에서 단백질과 핵산 서열들의 분석에서 중요한 방법이다. 생물학적인 염기 서열들은 그들 사이의 유사성과 차이점을 나타내기 위해 정렬된다. 본 논문에서는 기존의 DNA 염기 서열 배치 방법을 개선하기 위하여 DP(Dynamic Programming) 알고리즘의 비용증가( O (nm) ) 문제를 해결하는 Quadrant 방법과 품질 정보 및 퍼지 추론시스템(fuzzy inference system)을 적용한 DNA 염기 서열 배치 알고리즘을 제안한다. 본 논문에서 제안한 DNA 염기 서열 배치 알고리즘은 Quadrant 방법을 적용하여 Needleman-Wunsch의 DP 기반 알고리즘에서의 행렬 생성 단계에서 발생하는 불필요한 정렬 계산을 제거하여 전체 수행 시간을 단축하고, 각 DNA 염기 서열 단편 각각의 길이 차이와 낮은 품질의 DNA 염기 빈도를 퍼지 추론 시스템에 적용하여 지능적으로 갭 비용(gap cost)을 동적으로 조정한다. 제안된 알고리즘의 성능 평가를 위해 NCBI (National Center for Biotechnology Information)의 실제 유전체 데이터로 성능을 분석한 결과, 제안된 알고리즘이 기존의 품질정보만을 이용한 알고리즘보다 개선된 것을 확인하였다.

  • PDF

Optimal Reservoir Operation using Adaptive Neuro-Fuzzy Inference System (적응 퍼지 제어기법을 이용한 저수지 운영 최적화)

  • Kim, Jin-Ho;Chung, Gun-Hui;Lee, Do-Hun;Lee, Eun-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.779-783
    • /
    • 2010
  • 최근 들어 그 심각성을 더하고 있는 이상기후 현상으로 가용 수자원의 변동이 커지고 있으며, 이에 따라 수자원의 효율적인 운영이 요구되고 있다. 그러나 효율적인 운영을 위해서는 미래 유입량의 불확실성의 고려하고, 홍수 조절용량의 확보하면서도, 용수공급을 위한 저수량을 확보하고, 수력 발전을 해야 하는 복잡한 상황을 모두 고려하여야한다. 이러한 복잡한 시스템에서 하나의 최적화 기법으로는 모든 고려사항들을 만족시키는 최적해를 찾는 것은 사실상 불가능에 가깝다. 그러므로 저수지 운영의 최적화를 위한 연구에서 한 가지 이상의 기법을 조합하는 기법을 사용하게 되었다. 이러한 기법은 각 기법의 장점을 취하고 각각의 한계를 극복하기 위해 주로 사용되었다. 본 연구에서는 저수지 운영 최적화를 모의하기 위하여 대청댐에서의 저수위, 유입량, 용수이용량 등을 고려하여 방류량의 예측을 동적 계획법(Dynamic Programming Model)으로부터 동적 신경망(Dynamic Neural Network Model)과 적응 퍼지 제어기법(Adaptive Neuro-Fuzzy Inference System)을 개발하여 실제 방류량과 세 가지 최적화 방법에 의한 결과를 비교 검정하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 동적 신경망과 적응 퍼지 제어기법에 의한 최적화 모의가 동적 계획법에 비해 시스템의 구축이 쉽고 유연하다. 둘째, 퍼지추론의 Membership 함수의 구축에 따라 단시간에 많은 양의 강우가 발생하는 국지성 강우에 대해서도 최적 방류량을 예측할 수 있다. 셋째, 저수지 운영 과거자료의 부족과 불확실성을 해결하면, 보다 용이하고 양호한 예측결과를 얻을 수 있을 것이다.

  • PDF