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Abstract

In this paper, piecewise quadratic Lyapunov functions are used to analyze the stability of fuzzy-model-based controller.
We represent the nonlinear system using a Takagi-Sugeno fuzzy model, which represent the given nonlinéar system by
fuzzy inference rules and local linear dynamic models. The proposed stability analysis technique is developed by dividing
the whole fuzzy system into the smaller separate fuzzy systems to reduce the conservatism: Some necessary and sufficient
conditions for the proposed method are obtained. Finally, stability of the closed system with various kinds of controller for

TS fuzzy model is checked through the proposed method.
1. Introduction

During the past several years, fuzzy logic control has
become one of well-received approaches for utilizing
qualitative knowledge of a plant to design a controller [1-5,
8-10]. Fuzzy logic control is generally applicable to the
plants that are mathematically poorly modeled and where
the qualitative knowledge of experienced operators is
available for qualitative control. The specific design of a
fuzzy logic controller, however, has difficulties in the
acquisition of expert’s knowledge and relies to a great
extent on empirical and heuristic knowledge that, in many
cases, cannot be justified.

In 1985, Takagi and Sugeno proposed a new kind of
fuzzy inference system, called the Takagi—Sugeno (TS)
fuzzy model. It can combine the flexibility of fuzzy logic
theory and the rigorous mathematical analysis tools into a
unified framework. Since it employs linear models in the
consequent parts, it is convenient to apply the conventional
linear systems theory for analysis. Since then, various
kinds of TS fuzzy model based controllers -have been
suggested [1-5]. In these methods, sets’ of fuzzy rules are
used to construct suitable local linear state models from
which local controllers can be determined. The stability of
the overall system is then determined by a Lyapunov
stability analysis and LMI method. On the other hand, Cao
et al. [3-5} developed another kind of fuzzy controller
structure. In their works, the switching type controller is
used and the stability condition is derived by solving some
Algebraic Riccati Equations

Approach in [1-2] suffers mainly from a point that a
common positive definite matrix must be found to satisfy
several Lyapunov equations, which can be difficult
especially when the number of fuzzy rules required to give
a good plant model is large. Although LMI based
approaches have been used to determine the existence of a
common positive definite matrix [1-2], some other
problems still remain unresolved. Many researchers are
concentrated on relaxing the stability condition of fuzzy-
model-based controller.

Another kind of approach proposed by Cao et al. [3-5]
They use uncertain linear system theory to analyze the
stability of the fuzzy-model-based controller. It also shows
conservatism since the upper bounds which represent the
interactions between fuzzy rules can not be exactly
determined.

The purpose of this work is construct more relaxed
stability condition of fuzzy-model-based controller with
the techniques in modern control theory.

The main contribution of this work can be summarized
as follows. It is shown that the TS fuzzy model can be
reduced to the smaller TS fuzzy models if the number of
fuzzy rules fired at an instant is smaller than the number of
rules in the fuzzy rule base. The stability analysis of the
fuzzy-model-based controller is performed with piecewise
quadratic (PQ) Lyapunov function.

This paper is organized as follows: The preliminaries are
first briefly reviewed in Section 2. In Section 3, the
proposed stability analysis technique is detailed. Finally,
conclusions are drawn in Section 4.
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2. Preliminaries

In this paper, all matrices are with appropriate
dimensions if the dimensions are not explicitly stated.

The nonlinear systems can be modeled by finite
dimensional, deterministic ordinary differential equations
as follows:

x = f(x(6),u(r),0) 1)

in which xeR” is the state, u():R* >RP is the
control input. However, exact determination of the
nonlinear dynamic equations for the given nonlinear
system in the form of (1) is very difficult since the real
physical system is very complex. Even if one can obtain
the exact nonlinear dynamic equations, the design of the
suitable controller for the nonlinear system is complicated.
In many cases, the nonlinear system (1) may be
approximated by multiple linear state models. TS fuzzy
model combines the fuzzy inference rule and the local
linear state models [1-2]. The ith rule of the TS fuzzy
model, representing the complex system (1), is the
following:

Plant Rule i:

IF x() is F/ and..and x;(:) is F, @)
THEN x(t)=Aix()+Bu(®) (=12,..., r)
where Rule i denotes the ith fuzzy inference rule, F; (j
=1, 2, ..., n) are fuzzy sets, x € R" is the state vector,
u(t):RT >RP is the input control, 4; eR™”",

B; e R™P | r is the number of fuzzy IF-THEN rules, and

the constant matrices

By using the fuzzy inference method with a singleton
fuzzifier, product inference, and center average defuzzifier,
the dynamic fuzzy model (2) can be expressed as the
following global model:

0= Ty GO A0+ Bt)
= AQu(x(O))() + BUx(OD)u(e)

where,

wix(e) = 11 FiGU D))
J=1

3

W (x(0))
% wi (x(0))

=]
px()) = (py (x(0)), 42 (x(0)), -+ 2 (X(E)))
and F ;(x (1) is the grade of membership of x;(1) in

Hi(x(£)) =

F!.

In order to design a global controller for the TS fuzzy
madel (2) for the original nonlinear system (1), the parailel

distributed compensation (PDC) technique [4] is adopted in
this paper
Using the same premise as (2), the ith rule of the fuzzy
logic controller (FLC) can be obtained as follows:
Controller Rule #:
IF xj(¢) is F and...and x,() is F} @)
THEN u=-K;x (i=1,2,..7r)
where K; is the feedback gain vector. The fuzzy
controller (4) is analytically represented by

q
Zwi (x(O)-Kix(1)
u(ry==— == 2 4 (DK x(0)
2 wilx() =
i=1
=-K(u)x(t)
The overall closed-loop fuzzy system obtained by
combining (2) and (5) becomes
. 44
x=Zl _Zl,ui/‘j(Ai_Bin)x 6
i=lj=
A typical stability condition for fuzzy system (6) is given
as follows:

&)

Theorem 1. ([1]) The equilibrium of the fuzzy control
system (6) is asymptotically stable in the large if there
exists a common positive definite matrix P such that the
following two inequalities are satisfied:

(4; - B;K;}T P+ P{4; - B;K;} <0 for i=12,..r

)
and
G§P+PG,~,~<0 for i<j<r ®
where,
Ai_Bin+Aj—BjKi
y= 7

Since the above stability condition is very conservative,
the relaxed stability condition is proposed in [2].

Theorem 2. ([2]) The equilibrium of the fuzzy control
system (6) is asymptotically stable in the large if there
exists a common positive definite matrix P and M such
that the following inequalities are satisfied:

P>0, M20 &)
GIP+PG, +(s-DM <0,(i=12,.,r) (10
G, +G, G,+G,

(-—"-2-—L)TP+P(—"—2——’—’)—M50 (11)

where s is the maximum of the number of fuzzy
subsystems that are fired at an instant.
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3. Proposed stability analysis method

In this section, an alternative approach for the analysis of
the fuzzy-model-based controllers is detailed. Before going
further we make the following assumption.

Assumption 1. The number of fuzzy rules, which are
fired simultaneously forall, t+>01is s<r.

In this case, we can define the subspace S,(/=12,...s)

in the entire input space as the space where s rules are
fired concurrently at an instant. The characteristic function
of S, is defined by

_ I xes i -1 (12)
= 0 x¢8, l=m_ '

1

Define I, as the set of indices of fuzzy rules in S,.

Then, on every subspace, the fuzzy system (2) can be
denoted by

x = 4,(0)x(t) + B,(Hu(t)
= T u(x(D)4; + T u(x(0))Bu(t)’

iel, iel,

x(f)eS,  (13)

Therefore, the global system can be represented using
(12) and (13) as follows:

%= z (A, (O)x(€) + B, (t)u(D)) (14)

The system (14) can be viewed as a piecewise linear
time-varying system. Actually system (14) is the piecewise
linear combination of the smaller fuzzy systems. The above
result is summarized in the following theorem.

Theorem 3. The fuzzy system (2) can be transformed to
the piecewise linear time varying system (14), where each
subsystem is the smaller fuzzy system if the number of
fuzzy rules fired simultaneously forall, >0 is s<r.

There are some works on the stability analysis of the
piecewise linear system [6-7], where piecewise linear
quadratic (PQ) Lyapunov function is generally used.
Therefore, in this work, the stability analysis of the fuzzy-
model-based controller is studied with piecewise quadratic
Lyapunov function as a tool for analyzing Lyapunov
stability of the fuzzy-model-based controller. In order to
use the PQ Lyapunov function, we first make the following
assumption to guarantee the existence of the right-hand
derivative and left-hand derivative.

Assumption 2. If /th subsystem is in the [th state
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space, it will stay in the /th state space for a period of
time f where

f>7, 7 >0 is a fixed constant

and the number of traversing time instants among
regions S, is finite.

In this paper, we will use the following notion of stability
for the fuzzy system (2).

Definition 1. The fuzzy system (2) (with »=0) is said
to be quadratically stable if there exists an nxn positive
definite symmetric matrix P and a constant « >0 such
that the Lyapunov derivative for the Lyapunov function

V(x)=x" Px satisfies

L(x,0) = % = xT PLA(u(x()))" P+ PA(u(x())x < ~a || xI°

for all pairs (x,£) e R” xR . The fuzzy system (2) is said
to be quadratically stabilizable if there exists a state
feedback controller such that the closed-loop system is
quadratically stable. It should be noted that a state
feedback controller is not necessarily static controller.

First, we consider the autonomous fuzzy system (u =0)
as follows. We use PQ Lyapunov functions as a tool for
analyzing Lyapunov stability of (14) with #=0. Let

Vl=xTPIx (15)

be a Lyapunov function for subset S,. Then the global
Lyapunov function can be constructed as

V=xTPx='Z"jr;,V, =§:77,xTP,x (16)
I=] iI=1
This kind of Lyapunov function widely used for the
stability analysis of piecewise linear systems [3-7].

Lemma 1. The fuzzy system (2) (with u#=0) is
quadratically stable if there exists symmetric matrices P,
such that

P >0 17
ATP +PAT <0, (1=12,...,m) (18)

Proof: Let the Lyapunov function be (16). Then the time
derivative of the Lyapunov function is



V= Zn,{xT(Zn,Z,T)P+ Piﬂ/(i’?/‘z)x}
1=1 I=1 I=1 1=1 . (19)
= in,xT(Z,TP + Pz,)x
i=1 . :

Therefore, if the inequalities (17) and (18) are satisfied,
(19) is the fuzzy system (2) negative definite and the
proof is completed.

If input exists we can obtain following theorem
Theorem 4. The fuzzy system (2) is quadratically

stabijlizable via fuzzy controller (4) if " there exists
symmetric matrices P, such that

P >0 , (20)
(4, -BK) B +P(4-BK)<0,(I=12,.,m) (21)

where E, = 24, (x(O)K;

il

Proof: Let the Lyapunov function candldate is (16). The
closed loop fuzzy system is

x = A(u)x() - B()K (1)x (1)
Ax(t) 277/3 Z’]}K x(1)

i Ms T M§

(4, - BK)x(t)

Using Lemma 1, the proof is completed.

Note that Cao et al. [3-5] used PQ Lyapunov function for
the stability analysis of the fuzzy-model-based controller.
The main difference of the Cao's method and the proposed
method is as follows. In Cao's method, global fuzzy system
is divided into uncertain linear systems where the
interaction effect between fuzzy rules is regarded as
uncertainty of the each linear system. On the other hand,
we divide the global fuzzy system into fuzzy systems
whose number of fuzzy rules is less than the former one. In
this approach, the effect of the membership functions is
implicitly considered.

4. Conclusion

In this paper, piecewise quadratic Lyapunov functions are
used to analyze the stability of fuzzy-model-based
controller. We represent the nonlinear system using a
Takagi-Sugeno fuzzy model, which represent the given
nonlinear system by fuzzy inference rules and local linear
dynamic models. The proposed stability analysis technique

is developed by dividing the whole fuzzy system into the
smaller separate fuzzy systems to reduce the conservatism.
Some sufficient conditions for the proposed method are
obtained. Fmally, stablhty of the closed system with
various kinds of controller for. Té fuzzy model i is checked
through the proposed ‘méthod.
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