• Title/Summary/Keyword: Dynamic Feedback

Search Result 981, Processing Time 0.032 seconds

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Design and Feedback Performance Analysis of the Inverter-side LC Filters Used in the DVR System (DVR시스템에 사용되는 인버터부의 LC필터 설계와 피드백 성능분석)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • Voltage sags are considered the dominant disturbances affecting power quality. Dynamic voltage restorers(DVRs) are mainly used to protect sensitive loads from the electrical network voltage disturbances such as sags or swells and could be used to reduce harmonic distortion of ac voltages. The typical DVR topology essentially contains a PWM inverter with LC Filter, an injection transformer connected between the ac voltage line and the sensitive load, and a DC energy storage device. For injecting series voltage, the PWM inverter is used and the passive filter consist of inductor(L) and capacitor(C) for harmonics elimination of the inverter. However there are voltage pulsation responses by the characteristic of the LC passive filter that eliminate the harmonics of the PWM output waveform of the inverter. Therefore, this paper presented design and feedback performance of LC filter used in the DVRs. The voltage control by LC filter should be connected in the line side since this feedback method allows a relatively faster dynamic response, enabling the elimination of voltage notches or spikes in the beginning and in the end of sags and strong load voltage THD reduction. Illustrative examples are also included.

Linearization of the Nonlinear Control Systems (비선형 제어 시스템의 선형화)

  • 이홍기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.651-657
    • /
    • 2003
  • Linearization is one of the most successful approaches nonlinear system control. The objective of this paper is to survey the recent results in linearization theory. It is hoped to be useful in understanding various linearization problems and challenging unsolved problems.

Power system stabilization via adaptive feedback linearization (비선형 적응제어를 이용한 전력계통 안정화)

  • 윤태웅;이도관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1221-1224
    • /
    • 1996
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method is combined with an identification algorithm which estimates the effect of a fault.

  • PDF

Feedback Control of DC-DC Converters for Solar-Cell using DSP

  • Cho, Sung-Rae;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.3-127
    • /
    • 2001
  • In this paper, we present a technique of feedback control for different types of DC-DC converter using single DSP To improve dynamic response due to the variation of input voltage and current from solar cell caused by weather condition, the system is modeled as a hybrid system and simulated by MATLAB. Simulation result and experimental system are also compared with analog feedback control system.

  • PDF

State feedback controller design for linear multivariable systems with delays (다변수 시간지연 시스템의 상태궤환 제어기 설계)

  • 홍석민;황승구;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1040-1044
    • /
    • 1992
  • This paper presents an algebraic approach for finding a dynamic state feedback controller when the linear multi-input system with delays in both state and input is controllable. In the time-delay case, controllability of the system does not always imply that system is cyclizable. Therefore, reduced order augmentation systems which is cyclizable as the time-varying case are considered. It is possible to construct feedback contorl systems by using single-input methods.

  • PDF

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Control of Elevator Induction Motors with High Dynamic Performance and High Power Efficiency (엘리베이터를 위한 유도전동기의 에너지절감 및 고성능제어)

  • 김규식;김재윤;최주엽;송중호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance and high power efficiency by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis (T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kang Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

The Effect of Visual Feedback Squat on Q-angle with Patellofemoral Pain Syndrome (시각적 피드백 스쿼트가 슬개대퇴 통증 증후군이 있는 성인의 대퇴사두근 각에 미치는 영향)

  • Kim, Gi-Chul
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Background: The purpose of this study is to examine the effects of visual feedback squat exercise on the young adults with Patellofemoral pain syndrome. Methods: The subjects of this study were 22 female and 8 male who were equally and randomly allocated to a visual feedback exercise group (VSEG), an experimental group, and squat exercise group (SEG), a control group. Both did so for 30 minutes three times per week over a six-week period. Using Dartfish, their static Q-angle (SQA) and dynamic Q-angle (DQA) were evaluated. Results: The static Q-angle was significantly reduced in both groups of VSEG and SEG and in the comparison of difference values before and after exercise between groups, VSEG had more significant effect than SEG but in the comparison of the effects of dynamic Q-angle both VSEG and SEG had significant effects and in the comparison of difference values before and after exercise between groups, VSEG had more significant effect than SEG. Conclusion: Visual feedback squat exercise may be applied as a method to correct the lower extremity alignment with PFPS.

  • PDF