• 제목/요약/키워드: Dynamic FEM simulation

검색결과 164건 처리시간 0.026초

동적 민감도 해석을 이용한 판토그래프의 동특성 개선 (Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis)

  • 김진우;박동진;왕영용;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

동적 변형의 회전 성분을 효율적으로 추출하기 위한 실용적 방법 (A Practical Method for Efficient Extraction of the Rotational Part of Dynamic Deformation)

  • 최민규
    • 한국게임학회 논문지
    • /
    • 제18권1호
    • /
    • pp.125-134
    • /
    • 2018
  • 본 논문에서는 시간에 따라 연속적으로 변하는 $3{\times}3$ 행렬의 회전 성분을 효율적으로 추출하는 실용적인 방법을 제안한다. 이는 물리기반 동적 변형을 위하여 널리 사용되는 공회전 유한 요소법이나 형상 맞춤 변형에서 매우 중요한 기술이다. 최근 극분해를 사용하는 시간 독립적인 기존 방법들과 달리 회전행렬 추출을 물리적으로 공식화한 후, 점진적 회전 표현법을 이용하는 반복법이 제안되었다. 본 논문에서는 점진적 회전 벡터의 최대 회전각을 ${\pi}/2$ 이내로 제한함으로써 반복 횟수를 줄이는 최적화 기법을 개발한다. 사실적인 동적 변형 시뮬레이션에서는 충분히 작은 시간 간격을 사용하기 때문에 이러한 제한은 실용적으로 문제가 되지 않는다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화 (The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE)

  • 이현영;조용구;아미누딘 빈 아부;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

가속도계를 이용한 왕복보행보조기의 고관절 시스템 해석 -인체 진동해석과 FEM 해석을 중심으로- (Analysis on a Hip Joint System of New RGO Using Accelerometers)

  • 김명회;장대진;장영재;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.882-887
    • /
    • 2003
  • This paper presented a design and control of a new RGO(reciprocating gait orthosis)and its simulation. The new RGO was distinguished from the other one by which had a very light-weight and a new RGO(reciprocating gait orthosis) system. The vibration evaluation of the hip joint system on the new RGO(reciprocating gait orthosis)was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 ㎐. The gait of the new RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the new RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties, we made the hip joint system of FEM and the hip joint system by 1-axis and 3-axis Accelerometers.

  • PDF

하드디스크 드라이브 소음 예측을 위한 진동 음향 연계 해석 (Vibro-acoustic Analysis for Predicting the Noise of HDD)

  • 이상희;고상철;김준태;강성우;한윤식;황태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2001
  • The structure of hard disk drive(HDD) is excited by dynamic motion of a disk-spindle motor, and it makes sound noise. Therefore, the cover and the base of HDD should be designed to reduce noise and vibration induced by spindle motor. The prediction technique of sound pressure level(SPL) of a given structural shape enables us to design a cover and a base with much less vibration and noise. In this paper, we measured the force of disk-spindle motor and predicted SPL from HDD by computational simulation. To get a SPL of HDD by computational simulation, modal analysis and forced vibration analysis were performed with ANSYS, and sound radiation was computed using SYSNOISE. The calculated results were compared with experimental results and a good agreement was obtained. With this computer simulation procedure and design of experiment(DOE), optimal thickness of noise barrier and damper was calculated.

  • PDF

CAE를 이용한 나노 임프린팅 스테이지의 진동 해석 (Vibration Analysis of a Nano Imprinting Stage Using CAE)

  • 이강욱;이재우;이성훈;임시형;정재일;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.579-584
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body vibration has been presented. The simulation using CAE for the imprinting machine is to analyze vibration characteristics of 3-axis nano-imprinting stage and 4-axis nano-imprinting stage. Structural components such as the upper plate have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism.

  • PDF

Crowning 롤러를 이용한 벨트 이송 시스템의 시뮬레이션 (Simulation for Belt Transport System using Crowning Roller)

  • 유상헌;인용석;최연선;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.676-679
    • /
    • 2006
  • The media transport in automatic office machines such as printers, ATMs, copying machines is achieved by a complicated belt system. The system generally uses a crowning roller and belt which has been well-known for its intrinsic belt centering advantage during its operation. Since the modern office machines require precise high operating speed, stabilization of media transporting system has been one of the important issues of the machine design. Even a minor defect of the belt or the roller in the transport system directly affects its operating stability. This paper delivers a simulation technique that combines a multi-body dynamics analysis routine and a FEM based flexible continuum modeling for the efficient simulation of the flexible media transport problems.

  • PDF

심장의 수축 및 이완기에서의 좌심실 벽 움직임 시뮬레이션 (The left ventricle wall motion simulation during systolic and diastolic stages of the heart)

  • 최수미
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 춘계학술대회 논문집
    • /
    • pp.138-142
    • /
    • 1999
  • 심장의 수축 및 이완기에서의 좌심실 벽 움직임은 허혈 및 심근경색증과 같은 심장질환에서 영상적 진단의 주요한 특징이다. 심장은 동적 기관으로써 진단을 위해서는 속도와 같은 4차원 파라미터의 추정이 필요하다. 본 논문에서는 심장의 좌심실 형태 및 움직임을 모델링하여 동적으로 가시화하는 방법을 제시한다. 본 논문에서는 좌심실을 Dynamic Gaussian Blob 모델로 근사화하였다. 이 모델은 가우시안 함수 기반 FEM 요소와 superellipsoid를 통합한 것으로 좌심실의 형태 및 벽의 움직임을 물리기반 방법에 의해 묘사할 수 있다. 즉, 일련의 영상들로부터 좌심실 벽에 대응되는 3차원 점들을 추출한 후 이 점들에 작용되는 힘에 의해 박동하는 좌심실의 움직임을 추적한다. 이와 같은 좌심실 벽 움직임 시뮬레이션은 심장 움직임에 이상이 있는 질환의 진단을 위한 빠르고 간편한 보조 도구로써 사용되어질 수 있다.

  • PDF

고속전철용 판토그래프의 동적 특성 연구 (The Study On The Dynamic Characteristics For The Pantograph Of A High-speed Rail Vehicle)

  • 김진우;박동진;한창수;정경렬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.571-577
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analyses of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. By the pantograph-catenary analysis, the design parameters of a pantograph could be optimized. For more improving the dynamic characteristics of the pantograph, the active-pantograph was investigated by controlling a contact force. The active pantograph showed the better performance compared to the parameter-optimized. However, the parameter-optimized pantograph would be acceptable for a high-speed rail vehicle through the design-parameter analysis.

  • PDF

진동모타를 적용한 휴대폰 세트의 진동특성 극대화에 관한 연구 (A Study for the Maximization of Vibration Characteristics In the Cellular Phone Set with the Vibration Motor)

  • 김헌정;최창환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.356-361
    • /
    • 2001
  • A research to maximize the force transmitted from a vibration motor at the vibration mode, installed in the cellular phone jig, is presented in this study. When the natural frequencies corresponding to the structural vibration modes of the set exist within the range of the driving frequencies acquired by changing the RPM of the vibration motor, the structural vibration resonance is applicable to maximization of the vibration force sensible to the human body such as hands, arms, and hips. The analytical modal analysis using the Finite Elements and the experimental modal testing for the set jig were performed in order to understand the structural modes and the corresponding frequencies. Then the dynamic responses of the set jig to the given driving frequency were measured and the results on maximizing the vibration were confirmed by the FEM dynamic simulation.

  • PDF