• 제목/요약/키워드: Dynamic Elements

검색결과 1,387건 처리시간 0.024초

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

System identification of steel framed structures with semi-rigid connections

  • Katkhuda, Hasan N.;Dwairi, Hazim M.;Shatarat, Nasim
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.351-366
    • /
    • 2010
  • A novel system identification and structural health assessment procedure of steel framed structures with semi-rigid connections is presented in this paper. It is capable of detecting damages at the local element level under normal operating conditions; i.e., serviceability limit state. The procedure is a linear time-domain system identification technique in which the structure responses are required, whereas the dynamic excitation force is not required to identify the structural parameters. The procedure tracks changes in the stiffness properties of all the elements in a structure. It can identify damage-free and damaged structural elements very accurately when excited by different types of dynamic loadings. The method is elaborated with the help of several numerical examples. The results indicate that the proposed algorithm identified the structures correctly and detected the pre-imposed damages in the frames when excited by earthquake, impact, and harmonic loadings. The algorithm can potentially be used for structural health assessment and monitoring of existing structures with minimum disruption of operations. Since the procedure requires only a few time points of response information, it is expected to be economic and efficient.

유한요소법을 이용한 평판의 동특성 연구 (Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method)

  • 태순호;이태연;허문회
    • 한국안전학회지
    • /
    • 제7권2호
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발 (Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings)

  • 김경수;박준범
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.61-71
    • /
    • 1998
  • 본 논문에서는 2차원 공간에서의 탄성 또는 탄소성응력파를 받는 구조부재의 동적 파괴거동을 다룬다. 이러한 문제에 대한 지배방정식은 운동방정식과 탄소성 구성방정식에 대한 증감식으로 구성된 쌍곡선 편미분 방정식으로 나타나고, 이를 풀기 위해 유한차분법을 기초로 한 Zwas방법이 도입된다. 또한 탄소성문제의 동적거동을 나타내기 위해 응력공간내 탄소성 loading path가 소성항복 현상을 모델링하는데 제안된다. 이러한 계산결과를 바탕으로 탄성체의 균열선단의 동적응력확대계수가 계산되어지고, 탄소성체에 대한 소성영역의 형상의 시간이력을 보여준다.

  • PDF

발전기 무한모선계통의 동태안정도 해석시 A행렬의 구조 (On the Structure of A Matrix for Dynamic Stability Analysis of One Machine to the Infinite Bus)

  • 권세혁;송길영
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.1-9
    • /
    • 1990
  • 발전기-무한모선 계통에 대한 동적특성을 상세한 모델로 표현했을 때 A행열 원소들간의 상호 연관성을 전류모델 및 자속쇄교수모델에 대하여 규명하였다. A행열은 초기동작점과 관련있는 부분행열과 관련없는 부분행열로 분할할 수 있으며 여러개의 서로 다른 초기동작점에 대한 안정도 계산시 관련있는 부분행열만 열연산(Column Operation)으로 할 수 있음을 보였다. 이들 원소들을 발전기제작회사에서 제공하는 데이터로부터 직접적으로 계산할 수 있으며 초기상태변수값은 실효치를 그래도 시용할 수 있도록 하여, 상세한 모델의 A행열의 우너소계산을 간단히 할 수 있다.

  • PDF

Continuous size optimization of large-scale dome structures with dynamic constraints

  • Dede, Tayfun;Grzywinski, Maksym;Selejdak, Jacek
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.397-405
    • /
    • 2020
  • In this study size optimization of large-scale dome structures with dynamic constraints is presented. In the optimal design of these structure, the Jaya algorithm is used to find minimal size of design variables. The design variables are the cross-sectional areas of the steel truss bar elements. To take into account the constraints which are the first five natural frequencies of the structures, the finite element analysis is coded in Matlab programs using eigen values of the stiffness matrix of the dome structures. The Jaya algorithm and the finite elements codes are combined by the help of the Matlab - GUI (Graphical User Interface) programming to carry out the optimization process for the dome structures. To show the efficiency and the advances of the Jaya algorithm, 1180 bar dome structure and the 1410 bar dome structure were tested by taking into the frequency constraints. The optimal results obtained by the proposed algorithm are compared with those given in the literature to demonstrate the performance of the Jaya algorithm. At the end of the study, it is concluded that the proposed algorithm can be effectively used in the optimal design of large-scale dome structures.

Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces

  • Taiyari, Farshad;Mazzolani, Federico M.;Bagheri, Saman
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.525-535
    • /
    • 2019
  • The seismic performance of steel frames equipped with a particular type of bending dissipative braces (BDBs) having U elements, which has recently been introduced and tested by the authors, is investigated. For this purpose, two structural systems, i.e., simple and dual steel building frames, both with diagonal BDBs and different number of stories, are considered. After providing a design method of this new BDB, the detailed structural models are developed in the OpenSees platform to perform nonlinear dynamic analyses. Seismic performance factors like ductility, overstrength, response modification and deflection amplification factors are calculated using incremental dynamic analysis (IDA). In addition, to assess the damage probability of the structural models, their seismic fragilities are developed. The results show high energy dissipation capacity of both structural systems while the number of U elements needed for the bracing system of each story in the moment frames are less than those in the corresponding non-moment (simple) frames. The average response modification and deflection amplification factors for both structural schemes are obtained about 8.6 and 5.4, respectively, which are slightly larger than the corresponding recommended values of ASCE for the typical buckling-restrained braces (BRBs).

Modelling of seismically induced storey-drift in buildings

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.459-478
    • /
    • 2010
  • This paper contains detailed descriptions of a dynamic time-history modal analysis to calculate deflection, inter-storey drift and storey shear demand in single-storey and multi-storey buildings using an EXCEL spreadsheet. The developed spreadsheets can be used to obtain estimates of the dynamic response parameters with minimum input information, and is therefore ideal for supporting the conceptual design of tall building structures, or any other structures, in the early stages of the design process. No commercial packages, when customised, could compete with spreadsheets in terms of simplicity, portability, versatility and transparency. An innovative method for developing the stiffness matrix for the lateral load resistant elements in medium-rise and high-rise buildings is also introduced. The method involves minimal use of memory space and computational time, and yet allows for variations in the sectional properties of the lateral load resisting elements up the height of the building and the coupling of moment frames with structural walls by diaphragm action. Numerical examples are used throughout the paper to illustrate the development and use of the spreadsheet programs.

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

The MIN-N family of pure-displacement, triangular, Mindlin plate elements

  • Liu, Y. Jane;Riggs, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.297-320
    • /
    • 2005
  • In recent years the pure displacement formulation for plate elements has not been as popular as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular, Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully compatible kinematic fields, in which the interpolation functions for transverse displacement are one degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse meshes, and that it does not require shear relaxation.