Browse > Article
http://dx.doi.org/10.12989/sem.2005.19.3.297

The MIN-N family of pure-displacement, triangular, Mindlin plate elements  

Liu, Y. Jane (Department of Civil and Environmental Engineering, Tennessee Technological University)
Riggs, H.R. (Department of Civil and Environmental Engineering, University of Hawaii)
Publication Information
Structural Engineering and Mechanics / v.19, no.3, 2005 , pp. 297-320 More about this Journal
Abstract
In recent years the pure displacement formulation for plate elements has not been as popular as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular, Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully compatible kinematic fields, in which the interpolation functions for transverse displacement are one degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse meshes, and that it does not require shear relaxation.
Keywords
Mindlin plate elements; displacement formulation; triangular plate elements; higher-order plate elements;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Belytschko, T, Stolarski, H. and Carpenter, N. (1984), 'A $C^0$ triangular plate element with one-point quadrature', Int. J. Num. Meth. Eng., 20, 787-802   DOI   ScienceOn
2 Choi, C.K. and Park, Y.M. (1999), 'Quadratic NMS Mindlin-plate-bending element', Int. J. Num. Meth. Eng., 46, 1273-1289   DOI
3 Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, John Wiley & Sons
4 Crisfield, M.A. (1984), 'A quadratic Mindlin element using shear constraints', Comput. Struct., 18(5), 833-852   DOI   ScienceOn
5 Crisfield, M.A. (1986), Finite Elements and Solution Procedures for Structural Analysis, Pineridge Press, Swansea, U.K.
6 de Veubeke, B.F. (1965), 'Displacement and equilibrium models in the finite element method', in Stress Analysis: Recent Developments in Numerical and Experimental Methods, O.C. Zienkiewicz and G.S. Holister, eds., John Wiley & Sons, London, 145-197
7 Greimann, L.F. and Lynn, P.P. (1970), 'Finite element analysis of plate bending with transverse shear deformation', Nucl. Eng. Des., 14,223-230   DOI   ScienceOn
8 Hughes, T.J.R. and Cohen, M. (1978), 'The 'heterosis' finite element for plate bending', Comput. Struct., 9, 445-450   DOI   ScienceOn
9 Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), 'A simple and efficient finite element for plate bending', Int. J. Num. Meth. Eng., 11, 1529-1543   DOI   ScienceOn
10 Hughes, TJ.R. and Tezduyar, T.E. (1981), 'Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element', J. Appl. Mech., 48, 587-596   DOI
11 Brezzi, F., Bathe, K.J. and Fortin, M. (1989), 'Mixed-interpolated elements for Reissner/Mindlin plates', Int. J. Num. Meth. Eng., 28,1787-1801   DOI   ScienceOn
12 Sze, K.Y. (1997), 'Quadratic triangular $C^0$ plate bending element', Int. J. Num. Meth. Eng., 40, 937-95l   DOI
13 Ibrahimbegovic, A. and Frey, F. (1994), 'Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics', Int. J. for Numerical and Analytical Methods in Geomechanics, 37, 3659-3683
14 Liu, J., Riggs, H.R. and Tessler, A. (2000), 'A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints', Int. J. Num. Meth. Eng., 49(8), 1065-1086   DOI
15 Liu, Y.J. (2002), 'Development of the MIN-N family of triangular anisoparametric Mindlin plate elements', Ph.D. dissertation, University of Hawaii at Manoa, Honolulu
16 Liu, Y.J., Riggs, H.R. and Tessler, A. (1998), 'A 4-node anisoparametric Mindlin plate element based on the Tessler 3-node element', UHM/CE/98-01, University of Hawaii at Manoa, Honolulu
17 MacNeal, R.H. (1978), 'A simple quadrilateral shell element', Comput. Struct., 8, 175-183   DOI   ScienceOn
18 MacNeal, R.H. (1982), 'Derivation of element stitfuess matrices by assumed strain distributions', Nucl. Eng. Des., 70, 3-12   DOI   ScienceOn
19 MacNeal, R.H. and Harder, R.L. (1985), 'A proposed standard set of problems to test finite element accuracy', Finite Elem. Anal. Design, 1, 3-20   DOI   ScienceOn
20 Morley, L.S.D. (1963), Skew Plates and Structures, MacMillan, New York
21 Riggs, H.R., Tessler, A and Chu, H. (1997), 'C1-continuous stress recovery in finite element analysis', Comput. Meth. Appl. Mech. Eng., 143(3/4), 299-316   DOI   ScienceOn
22 Roark, R.J. and Young, W.C. (1975), Formulas for Stress and Strain, McGraw-Hill Book Company, New York
23 Sheikh, AH. and Dey, P. (2001), 'A new triangular element for the analysis of thick and thin plates', Comm. Num. Meth. Engr., 17, 667-673   DOI   ScienceOn
24 Tessler, A. and Dong, S.B. (1981), 'On a hierarchy of conforming Timoshenko beam elements', Comput. Struct., 14(3-4), 335-344   DOI   ScienceOn
25 Sze, K.Y. and Zhu, D. (1998), 'A quadratic assumed natural strain triangular element for plate bending analysis', Comm. Num. Meth. Engr., 14, 1013-1025   DOI
26 Tessler, A. (1982), 'On a conforming, Mindlin-type plate element', in The Mathematics of Finite Elements and Applications IV, J.R. Whiteman, ed., Academic Press, London, 119-126
27 Tessler, A. (1985), 'A priori identification of shear locking and stiffening in triangular Mindlin elements', Comput. Meth. Appl. Mech. Eng., 53(2), 183-200   DOI   ScienceOn
28 Tessler, A. and Hughes, T.J.R. (1985), 'A three-node Mindlin plate element with improved transverse shear', Comput. Meth. Appl. Mech. Eng., 50, 71-101.   DOI   ScienceOn
29 Tessler, A., Riggs, H.R., Freese, C.E. and Cook, a.M. (1998), 'An improved variational method for finite element stress recovery and a posteriori error estimation', Comput. Meth. Appl. Mech. Eng., 155, 15-30   DOI   ScienceOn
30 Tessler, A, Riggs, H.R. and Macy, S.C. (1994), 'A variational method for finite element stress recovery and error estimation', Comput. Meth. Appl. Mech. Eng., 111, 369-382   DOI   ScienceOn
31 Xu, Z. (1992), 'A thick-thin triangular plate element', Int. J. Num. Meth. Eng., 33, 963-973   DOI
32 Zienkiewicz, O.C. and Lefebvre, D. (1988), 'A robust triangular plate bending element of the Reissner-Mindlin type', Int. J. Num. Meth. Eng., 26, 1169-1184   DOI   ScienceOn
33 Batoz, J.L. and Lardeur, P. (1989), 'A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates', Int. J. Num. Meth. Eng., 28, 533-560   DOI   ScienceOn
34 Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part I. A simple quadrilateral', Int. J. Num. Meth. Eng., 36, 3043-3056   DOI   ScienceOn
35 ANSYS. (1998), Ansys User's Manual, v. 5.5
36 Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), 'The MITC7 and MITC9 plate bending element', Comput. Struct., 32, 797-814   DOI   ScienceOn
37 Bathe, K.J. and Dvorkin, E.N. (1985), 'A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation', Int. J. Num. Meth. Eng., 21, 367-383   DOI   ScienceOn
38 Batoz, J.L. (1982), 'An explicit formulation for an efficient triangular plate-bending element', Int. J. Num. Meth. Eng., 18, 1077-1089   DOI   ScienceOn
39 Yazdani, A.A., Riggs, H.R. and Tessler, A. (2000), 'Stress recovery and error estimation for shell structures', Int. J. Num. Meth. Eng., 47, 1825-1840   DOI
40 Taylor, R.L. and Auricchio, F. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part II. A simple triangle', Int. J. Num. Meth. Eng., 36, 3057-3066   DOI   ScienceOn
41 Auricchio, F. and Taylor, R.L. (1994), 'A shear deformable plate element with an exact thin limit', Comput. Meth. Appl. Mech. Eng., 118, 393-412   DOI   ScienceOn
42 Belytschko, T. and Wong, B.K. (1989), 'Assumed strain stabilization procedure for the 9-node Lagrange shell element', Int. J. Num. Meth. Eng., 28, 385-414   DOI   ScienceOn
43 Tessler, A. (1990), 'A $C^0$-anisoparametric three-node shallow shell element', Comput. Meth. Appl. Mech. Eng., 78,89-103   DOI   ScienceOn
44 Liu, Y.J. and Buchanan, G.R. (2004), 'Free vibration of stepped cantilever Mindlin plates', J. Sound Vib., 271, 1083-1092   DOI   ScienceOn
45 Pugh, E.D.L., Hinton, E. and Zienkiewicz, O.C. (1978), 'A study of quadrilateral plate bending elements with 'reduced' integration', Int. J. Num. Meth. Eng., 12, 1059-1079   DOI   ScienceOn
46 Tessler, A. and Hughes, T.J.R. (1983), 'An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element', Comput. Meth. Appl. Mech. Eng., 39, 311-335   DOI   ScienceOn