• Title/Summary/Keyword: Dynamic Design of System

Search Result 3,895, Processing Time 0.032 seconds

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

Preparatory Experiment on the Construct ion of Tunable Dynamic Absorber (가변 동흡진기 구축을 위한 예비 실험)

  • 박종훈;한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.329-334
    • /
    • 2002
  • Preliminary test for the design and construction of a tuned dynamic absorber is a conducted. Proposed tuned dynamic absorber is a cantilevered beam type, and is supposed to adjust its natural frequency according to the changing operation condition of the primary system. The modal mass of the dynamic absorber is the easiest to control, therefore, the position of the attached mass of the dynamic absorber is considered as the main design parameter of the absorber. The effect of the dynamic absorber is experimentally verified under various operation conditions of the primary system.

  • PDF

Quantitative Analyses of System Level Performance of Dynamic Memory Allocation In Embedded Systems (내장형 시스템 동적 메모리 할당 기법의 시스템 수준 성능에 관한 정량적 분석)

  • Park, Sang-Soo;Shin, Heon-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.6
    • /
    • pp.477-487
    • /
    • 2005
  • As embedded system grows in size and complexity, the importance of the technique for dynamic memory allocation has increased. The objective of this paper is to measure the performance of dynamic memory allocation by varying both hardware and software design parameters for embedded systems. Unlike torrent performance evaluation studies that have presumed the single threaded system with single address spate without OS support, our study adopts realistic environment where the embedded system runs on Linux OS. This paper contains the experimental performance analyses of dynamic memory allocation method by investigating the effects of each software layer and some hardware design parameters. Our quantitative results tan be used to help system designers design high performance, low power embedded systems.

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

A preference­based design metric in dynamic robust design (설계자 선호도를 고려한 동적 시스템의 강건설계법)

  • 김경모
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Dynamic robust design has been regarded as the most powerful design methodology for improving product quality, Dynamic SN ratio adopted in dynamic robust design combines two major quality attributes, the variability around the linear function and the slope of the linear function, into a single design metric. The principal shortcoming associated with the dynamic SN ratio is that the metric is independent of designer's preferences for the quality attributes due to priori sets of attribute tradeoff values inherent in it. Therefore, a more rigorous preference­based design metric to accurately capture designer's intent and preference is needed. A new design metric that can be used in dynamic robust design is proposed. The effectiveness of the proposed design metric is examined with the aid of a demonstrative case study and the results are discussed.

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

An Optimization of Dynamic Elements for Eddy Current Braking System of High Speed Train (고속전철의 와전류 제동장치 동적 최적화 연구)

  • Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.345-350
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for prediction of the dynamic behavior of an eddy current braking system. Five design variables and five performance index are considered for optimization through D-optimal experimental design in this paper. Also model center is used to search the optimal point for sum of performance index with variational matric method.

  • PDF

Research on Hydraulic System Design and Vehicle Dynamic Modeling for the Development of Tire Roller (타이어 로울러 개발을 위한 유압 시스템 설계 및 차량 동역학적 모델링에 관한 연구)

  • 김상겸;김준호;이운성;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.201-211
    • /
    • 2002
  • In this research, we are trying to research about hydraulic system design and vehicle dynamic modeling far the development of the tire roller. The reason why we would like develop it is that tire roller is one of the most useful machine for the road construction site and application other construction equipments. Here, we conceptualize the new hydraulic system and derive the equations of motion fur dynamic analysis and also investigate system modeling by using a DAQ board. We design the hydraulic circuit of steering and traction mechanism system. This design can be used to create virtual prototypes of construction equipment. So, we studied tire roller to integrate development technology. In system analysis, we formulate hydraulic traction system model and hydraulic steering system model. Also, we integrate DAQ system to acquire experimental results in real tire roller equipment.