• Title/Summary/Keyword: Dynamic Deformation

Search Result 1,491, Processing Time 0.027 seconds

Performance of Tilting Pad Journal Bearings with Different Thermal Boundary Conditions (열 경계 조건이 다른 틸팅패드저널베어링의 성능)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.14-24
    • /
    • 2021
  • This study shows the effect of the thermal boundary condition around the tilting pad journal bearing on the static and dynamic characteristics of the bearing through a high-precision numerical model. In many cases, it is very difficult to predict or measure the exact thermal boundary conditions around bearings at the operating site of a turbomachine, not even in a laboratory. The purpose of this study is not to predict the thermal boundary conditions around the bearing, but to find out how the performance of the bearing changes under different thermal boundary conditions. Lubricating oil, bearing pads and shafts were modeled in three dimensions using the finite element method, and the heat transfer between these three elements and the resulting thermal deformation were considered. The Generalized Reynolds equation and three-dimensional energy equation that can take into account the viscosity change in the direction of the film thickness are connected and analyzed by the relationship between viscosity and temperature. The numerical model was written in in-house code using MATLAB, and a parallel processing algorithm was used to improve the analysis speed. Constant temperature and convection temperature conditions are used as the thermal boundary conditions. Notably, the conditions around the bearing pad, rather than the temperature boundary conditions around the shaft, have a greater influence on the performance changes of the bearing.

Evaluation of Structural Integrity and Cooling Performance of 4250 kVA Power Transformer with ONAN Mode (ONAN 모드 4250kVA 변압기의 구조 건전성과 냉각 성능의 평가)

  • Yang, Chaofan;Kim, Seongik;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.48-57
    • /
    • 2021
  • The main research content of this paper is to evaluate the structural integrity and the cooling performance of 4250 kVA power transformer with ONAN(Oil Natural and Air Natural) mode. The dynamic analysis is used to verify the structural safety of the transformer by seismic loading. The transformer structure is simplified and NX software is used to build a three-dimensional model, and ANSYS commercial software is used to calculate the stress and deformation by applying corresponding load. The analysis result was evaluated whether it satisfies the design requirements according to the IEEE Std 693 standard. In terms of thermal analysis to evaluate the cooling performance, the thermal physical model is used to calculate the heat exchange between the radiator and the tank in the steady state, and the result is input into the Fluent software to calculate the internal temperature field of the transformer tank, which reduces the calculation cost of thermal fluid. Comparing the simulated hot spot temperature and top oil temperature of the transformer with the calculation results of the IEC60076 classic model, it is found that the error is only 1.9%.

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.717-728
    • /
    • 2023
  • The effect of temperature dependent material properties on the free vibration of FG porous beams is investigated in the present paper. A quasi-3D shear deformation solution is used involves only three unknown function. The mechanical properties which are considered to be temperature-dependent as well as the porosity distributions are assumed to gradually change along the thickness direction according to defined law. The beam is supposed to be simply supported and lying on variable elastic foundation. The differential equation system governing the free vibration behavior of porous beams is derived based on the Hamilton principle. Navier's method for simply supported systems is then used to determine and compute the frequencies of FG porous beam. The results of the present formulation are validated by comparing with those available literatures. Finally, the effects of several parameters such as porosity distribution and the parameters of variable elastic foundation on the free vibration behavior of temperature-dependent FG beams are presented and discussed in detail.

Measured structural response of a long irregular pit constructed using a top-down method

  • Yang, Sun;Yufei, Che;Zhenxue, Gu;Ruicai, Wang;Yawen, Fan
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.489-503
    • /
    • 2022
  • A 1257-m-long irregular deep foundation pit located in the central of Nanjing, China was constructed using the combined full-width and half-width top-down method. Based on the long-term field monitoring data, this study analyzed the evolution characteristics of the vertical movement of the columns, internal force of the struts, and axial force of the structural beam and slab. The relevance of the three mentioned above and their relationship with the excavation process, structural system, and geological conditions were also investigated. The results showed that the column uplift was within the range of 0.08% to 0.22% of the excavation depth, and the embedded depth ratio of the diaphragm wall and the bottom heave affected significantly on the column uplift. The differential settlement between the column and diaphragm wall remained unchanged after the base slab was cast. The final settlement of the diaphragm wall was twice the column uplift. The internal force of the struts did not varied monotonically but was related to numerous factors such as the excavation depth, number of struts, and environmental conditions. Additionally, the dynamic force and deformation of the columns, beams, and slabs were analyzed to investigate the inherent relationship and variation patterns of the responses of different parts of the structure.

Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions (간극비를 고려한 흙-수분특성 방정식의 적용성 평가)

  • Lim, Seong-Yoon;Song, Chang-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.39-48
    • /
    • 2007
  • The soil-water characteristic curve(SWCC) is a useful tool in the prediction of the engineering behavior of unsaturated soils. Several equations are available in the literature to mathematically represent the experimental behavior of the SWCC. Some equations are based on the assumption that the shape of curve is dependent upon pore-size distribution. Other equations assume that SWCC can be estimated from the grain size distribution and the physical properties of soils. This study evaluated the suitability of using two different SWCC equations for defining the relationship between water content and matric suction. Various parameters that influence the SWCC behavior are also briefly discussed.

Size-dependent strain rate sensitivity in structural steel investigated using continuous stiffness measurement nanoindentation

  • Ngoc-Vinh Nguyen;Chao Chang; Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.355-363
    • /
    • 2023
  • The main purpose of this study is to characterize the size-dependent strain rate sensitivity in structural steel using the continue stiffness measurement (CSM) indentation. A series of experiments, such as CSM indentation and optical microscope examination, has been performed at the room temperature at different rate conditions. The results indicated that indentation hardness, strain rate, and flow stress showed size-dependent behavior. The dependency of indentation hardness, strain rate, and flow stress on the indentation size was attributed to the transition of the dislocation nucleation rate and the dislocation behaviors during the indentation process. Since both hardness and strain rate showed the size-dependent behavior, SRS tended to depend on the indentation depth. The results indicated that the SRS was quite high over 2.0 at the indentation depth of 240 nm and quickly dropping to 0.08, finally around 0.046 at large indents. The SRS values at large indentations strongly agree with the general range reported for several types of low-carbon steel in the literature (Chatfield and Rote 1974, Nguyen et al. 2018b, Luecke et al. 2005). The results from the present study can be used in both static and dynamic analyses of structures as well as to assess and understand the deformation mechanism and the stress-state of material underneath the indenter tip during the process of the indentation testing.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.