• Title/Summary/Keyword: Dynamic Control Algorithm

Search Result 1,624, Processing Time 0.031 seconds

Extraction of Corresponding Points of Stereo Images Based on Dynamic Programming (동적계획법 기반의 스테레오영상의 대응점 탐색)

  • Lee, Ki-Yong;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.397-404
    • /
    • 2011
  • This paper proposes an algorithm capable of extracting corresponding points between a pair of stereo images based on dynamic programming. The purpose of extracting the corresponding points is to provide the stereo disparity data to a road-slope estimation algorithm with high accuracy and in real-time. As the road-slope estimation algorithm does not require dense disparity data, the proposed stereo matching algorithm aims at extracting corresponding points accurately and quickly. In order to realize this contradictory goal, this paper exploits dynamic programming, and minimizes matching candidates using vertical components of color edges. Furthermore, the typical occlusion problem in stereo vision is solved. The proposed algorithm is proven to be effective through experiments with various images captured on the roads.

Effective Dynamic Models for the Development of Control Algorithms of a Condensing Gas Boiler System (콘덴싱 가스보일러시스템의 제어 알고리즘 개발을 위한 효과적인 동적모델)

  • Han, Do-Young;Kim, Sung-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.34-39
    • /
    • 2007
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a condensing gas boiler unit, the effective operations and controls of the system are necessary. In this study, mathematical models of a condensing gas boiler system were developed and programmed in order to predict dynamic behaviors of the system. These include dynamic models for a blower, a gas valve, a pump, a burner, a boiler heat exchanger, and a hot water heat exchanger. Control algorithms for the control of a gas valve, a blower, and a pump were also assumed. Simulation results showed good predictions of the dynamic phenomena of a boiler system. Therefore, the simulation program developed for this study may be effectively used for the development of control algorithms of the boiler system.

  • PDF

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique (비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

A controller design method based on the Hessenberg form

  • Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1123-1126
    • /
    • 1990
  • A new controller design algorithm based on the Hessenberg form for linear control systems has een proposed. The controller is composed of the dynamic compensator and the state feedback (dynamic state feedback). The algorithm gives a simple way to assign the eigenstructure (eigenvalues and eigenvectors) of the closed loop system and it also provides a method to assign the frequency shapes near the corner frequencies of the closed loop transfer function matrix. Because of this property, the algorithm is called the independent frequency shape control (IFSC) method.

  • PDF

Dynamic GBFCM(Gradient Based FCM) Algorithm (동적 GBFCM(Gradient Based FCM) 알고리즘)

  • Kim, Myoung-Ho;Park, Dong-C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1371-1373
    • /
    • 1996
  • A clustering algorithms with dynamic adjustment of learning rate for GBFCM(Gradient Based FCM) is proposed in this paper. This algorithm combines two idea of dynamic K-means algorithms and GBFCM : learning rate variation with entropy concept and continuous membership grade. To evaluate dynamic GBFCM, we made comparisons with Kohonen's Self-Organizing Map over several tutorial examples and image compression. The results show that DGBFCM(Dynamic GBFCM) gives superior performance over Kohonen's algorithm in terms of signal-to-noise.

  • PDF

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

The Supply Water Algorithm for a Condensing Gas Boiler Control (콘덴싱가스보일러 제어를 위한 공급수알고리즘)

  • Han, Do-Young;Yoo, Byeong-Kang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.

Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA (SPA에 의한 동적인 보트의 태양전지 효율 분석)

  • Han, Jong-Ho;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.