• Title/Summary/Keyword: Dynamic Component

Search Result 1,105, Processing Time 0.033 seconds

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

A Real-Time Image Processing Algorithms for An Automatic Assembly System of Electronic Components (전자부품 조립공정의 자동화를 \ulcorner나 실시간 영상처리 알고리즘에 관한 연구)

  • ;;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.804-815
    • /
    • 1988
  • Real-time image processing algorithms to detect position and orientation of rectangular type electronic components are developed. The position detection algorithm is implemented with the use of projection method which is insensitive to noise. Also dynamic thresholding method of projection is employed in order to distinguish between the boundary of a component and any marking on the component. The orientation is determined by Hough transform of boundary candidates of a component, which is obtained a priori by a simple edge detection method. For real-time processing of both position and orientation for a component which is not aligned well, parallel processing method of image data is proposed and tested in real-time.

  • PDF

Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method (구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석)

  • Yang, B.S.;Kim, Y.H.;Choi, B.G.;Lee, H.
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

Fast Extraction of Symmetrical Components from Distorted Three-Phase Signals Based on Asynchronous-Rotational Reference Frame

  • Hao, Tianqu;Gao, Feng;Xu, Tao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1045-1053
    • /
    • 2019
  • A symmetrical component decomposition scheme utilizing the characteristics of the asynchronous rotational reference frame transformation is proposed in this paper for the extraction of the positive and negative sequence components of distorted three-phase grid voltages. The undesired frequency component can be removed using a specially designed series coordinate transformation and half-cycle delays, where the delay can be controlled by adjusting the frequency of the rotating reference frame. The extracted symmetrical component can then be compensated based on the applied coordinated transformation. The dynamic response of the proposed algorithm is improved when compared to that of conventional methods. The effectiveness of the proposed algorithm is verified by simulation and experimental results.

Effect of seismic torsional component on nonlinear behavior of reinforced concrete multi-story buildings

  • Abderrahmane Ouazir;Asma Hadjadj;Mansour Ouazir;Mustapha Boukendakji;Hatem Gasmi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.349-355
    • /
    • 2024
  • This paper investigates the influence of the torsional component of earthquake on the nonlinear structural behavior of reinforced concrete (RC) buildings. It also estimates the equivalent additional eccentricity that results from this component. For this purpose, we generate torsional accelerograms from translational ones and conduct nonlinear seismic analysis on both regular and irregular structures. The results show that the torsional component has a significant impact on the structural response, especially for irregular structures. The equivalent additional eccentricity of the cases studied was higher than 5% which is the value of accidental eccentricity suggested by many seismic codes.

Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique (유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어)

  • Jung, Hoon-Hyung;Jo, Hyeon-Min;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

On the Evaluation of In-Vehicle Dynamic Characteristics and On-Road Dynamic Stability(Angle of Rotation) of Rearview Mirror (리어뷰 미러의 실차 동특성 및 주행시 동적 안정성(회전각)에 대한 평가)

  • Jung, Seung-Kyun;Lee, Keun-Soo;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • Dynamic stability of the vehicle rearview mirror is an important factor for the driver's visual perception (image blur) when driving down the road and regarded as one of the vehicle level N&V performance of visible component vibration. Several projects within GM identified a set of objective metrics and validation methods that can replace current existing subjective evaluation of mirror stability. This paper presents objective evaluation results for assessing dynamic stability (angle of rotation) of the vehicle rearview mirrors using both in-lab FRF measurements and on-road testing.

  • PDF

Mechatronic Analysis for Feeding a Structure of a Machine Tool Using Multi-body Dynamics (다물체 동역학을 활용한 공작기계 구조물 이송을 위한 메카트로닉 해석)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.691-696
    • /
    • 2012
  • In this study, a rigid multi-body dynamic model has been developed for mechatronic analysis to evaluate dynamic behavior of a machine tool. The development environment was the commercialized analysis tool, ADAMS, for rigid multi-body dynamic analysis. A simplified servo control logic was implemented in the tool using its functions in order to negate any external tool of control definition. The advantage of the internal implementation includes convenience of the analysis process by saving time and efforts. Application of this development to a machine tool helps to evaluate its dynamic behavior against feeding its component, to calculate the motor torque, and to optimize parameters of the control logic.

Dynamic Access Control for Personalized Environment in Ubiquitous Computing

  • Kim, Yuna;Shin, IlShik;Hong, Sung Je;Kim, Jong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.233-241
    • /
    • 2007
  • In an ubiquitous environment, for controlling user access according to environment of users, a number of access control models enforcing dynamic environment of users have been proposed. However, they do not support personalized environments of each user and have a run-time overhead of searching active roles. In this paper, we propose a new model, PE-RBAC, that extends the RBAC architecture by addition of a personalized environment component as a constraint to accommodate dynamic and mobile users. In this model, a dynamic role activation is presented by using a new role-to-environment structure instead of the conventional role hierarchy, which makes it efficient to find the active roles according to a user's personalized environment.

  • PDF