• Title/Summary/Keyword: Dynamic Buckling

Search Result 289, Processing Time 0.023 seconds

Dynamic Lumbar Spinal Stenosis : The Usefulness of Axial Loaded MRI in Preoperative Evaluation

  • Choi, Kyung-Chul;Kim, Jin-Sung;Jung, Byung-Joo;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.265-268
    • /
    • 2009
  • Two cases of dynamic lumbar spinal stenosis were identified by the authors using axial loaded magnetic resonance image (MRI). In both cases, the patients presented with neurogenic claudication but MRI in decumbency showed no definite pathologic condition associated with their symptoms. In contrast, axial loaded MRI demonstrated constrictive spinal stenosis and a significantly decreased dural sac caused by epidural fat buckling and thickening of the ligamentum flavum in both cases. In the second case, a more prominent disc protrusion was also demonstrated compared with decumbent MRI. After decompressive surgery, both patients had satisfactory outcomes. Axial loaded MRI can therefore give decisive information in dynamic spinal disorders by allowing simulation of an upright position.

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

Acoustic Emmision Characteristics according to Failure Modes of Pipes with Local Wall Thinning (감육배관의 손상모드에 따른 음향방출 특성)

  • 안석환;남기우;김선진;김진환;김현수;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.66-72
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding region, plastic deformation region and crack progress region could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. The result of the frequency range is expected to be basic data that can inspect plants in real-time.

A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator (수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구)

  • Lee, Gil-Yong;Chang, Hee-Doh;Park, Young-Ho;Park, In-Hwang;Han, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

A Study on the Dynamic Reliability Analysis of the Shell Structure under Random Loads (불규칙 하중을 받는 Shell 구조물의 동적 신뢰성 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.334-345
    • /
    • 1997
  • Reliability-based design approaches are needed for cylindrical shell structure whose design and operational experiences are few and which are subjected to external loads of random loads. In designing new type of structure, it is very difficult to evaluate the safety factors due to lack of previous design data and operational experience. To solve the above mentioned problem, much attention is being focussed on rational reliability based design approaches. This paper deals with weight-optional reliability-based design of cylindrical shell structure subjected to structural reliability constraints taking into account of the effect of local buckling and interactive behavior between local and global buckling. Present mentioned is compared with the exiting optional design method based only on safety factors. Numerical simulation reveals that the present method leads to lighter structure (4% reduction in weight compared to the existing optimal design) with the same reliability index. For larger structures with more number of structural members and possible failure modes, the present W0RBD procedure will be an efficient tool in designing cost-effective rationalized economic design.

  • PDF

Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams (비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬)

  • Yoon Hee-Taek;Kim Moon-Young;Kim Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Investigation of influence of homogenization models on stability and dynamic of FGM plates on elastic foundations

  • Mehala, Tewfik;Belabed, Zakaria;Tounsi, Abdelouahed;Beg, O. Anwar
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.257-271
    • /
    • 2018
  • In this paper, the effect of the homogenization models on buckling and free vibration is presented for simply supported functionally graded plates (FGM) resting on elastic foundation. The majority of investigations developed in the last decade, explored the Voigt homogenization model to predict the effective proprieties of functionally graded materials at the macroscopic-scale for FGM mechanical behavior. For this reason, various models have been used to derive the effective proprieties of FGMs and simulate thereby their effects on the buckling and free vibration of FGM plates based on comparative studies that may differ in terms of several parameters. The refined plate theory, as used in this paper, is based on dividing the transverse displacement into both bending and shear components. This leads to a reduction in the number of unknowns and governing equations. Furthermore the present formulation utilizes a sinusoidal variation of displacement field across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the buckling and free vibration analysis are obtained for simply supported plates. The obtained results are compared with those predicted by other plate theories. This study shows the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Comprehensive visualization of results is provided. The analysis is relevant to aerospace, nuclear, civil and other structures.

Seismic Performance Evaluation of Recentering Braced Frame Structures Using Superelastic Shape Memory Alloys - Nonlinear Dynamic Analysis (초탄성 형상기억합금을 활용한 자동복원 가새 프레임 구조물의 내진성능 평가 - 비선형 동적해석)

  • Ban, Woo-Hyun;Hu, Jong-Wan;Ju, Young-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2020
  • Korea was recognized as a relatively safe area for earthquake. However, due to considerable damage to facilities caused by the earthquake in Gyeongju and Pohang, interest in the maintenance and repair of structures is increasing. So interest in vibration damping technology applicable to existing structures is also increasing. However, vibration damping technology has a problem in that its usability is reduced due to damage of the damping device when a strong earthquake occurs. Recently, in order to solve such a problem, study is being conducted to apply a superelastic shape memory alloys (SSMA) capable of recentering bracing. Therefore, in this study, nonlinear dynamic analysis is performed to evaluate the seismic performance of the buckling-restrained braced frame (BRBF) applied SSMA to bracing.