• Title/Summary/Keyword: Dynalog file

Search Result 6, Processing Time 0.023 seconds

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.

Segmental Analysis Trial of Volumetric Modulated Arc Therapy for Quality Assurance of Linear Accelerator

  • Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Huh, Hyun Do;Kim, Seonghoon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.128-138
    • /
    • 2019
  • Purpose: Segmental analysis of volumetric modulated arc therapy (VMAT) is not clinically used for compositional error source evaluation. Instead, dose verification is routinely used for plan-specific quality assurance (QA). While this approach identifies the resultant error, it does not specify which machine parameter was responsible for the error. In this research study, we adopted an approach for the segmental analysis of VMAT as a part of machine QA of linear accelerator (LINAC). Methods: Two portal dose QA plans were generated for VMAT QA: a) for full arc and b) for the arc, which was segmented in 12 subsegments. We investigated the multileaf collimator (MLC) position and dosimetric accuracy in the full and segmented arc delivery schemes. A MATLAB program was used to calculate the MLC position error from the data in the dynalog file. The Gamma passing rate (GPR) and the measured to planned dose difference (DD) in each pixel of the electronic portal imaging device was the measurement for dosimetric accuracy. The eclipse treatment planning system and a MATLAB program were used to calculate the dosimetric accuracy. Results: The maximum root-mean-square error of the MLC positions were <1 mm. The GPR was within the range of 98%-99.7% and was similar in both types of VMAT delivery. In general, the DD was <5 calibration units in both full arcs. A similar DD distribution was found for continuous arc and segmented arcs sums. Exceedingly high DD were not observed in any of the arc segment delivery schemes. The LINAC performance was acceptable regarding the execution of the VMAT QA plan. Conclusions: The segmental analysis proposed in this study is expected to be useful for the prediction of the delivery of the VMAT in relation to the gantry angle. We thus recommend the use of segmental analysis of VMAT as part of the regular QA.

Plan-Class Specific Reference Quality Assurance for Volumetric Modulated Arc Therapy

  • Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Kim, Seonghoon
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.32-42
    • /
    • 2019
  • Background: There have been much efforts to develop the proper and realistic machine Quality Assurance (QA) reflecting on real Volumetric Modulated Arc Therapy (VMAT) plan. In this work we propose and test a special VMAT plan of plan-class specific (pcsr) QA, as a machine QA so that it might be a good solution to supplement weak point of present machine QA to make it more realistic for VMAT treatment. Materials and Methods: We divided human body into 5 treatment sites: brain, head and neck, chest, abdomen, and pelvis. One plan for each treatment site was selected from real VMAT cases and contours were mapped into the computational human phantom where the same plan as real VMAT plan was created and called plan-class specific reference (pcsr) QA plan. We delivered this pcsr QA plan on a daily basis over the full research period and tracked how much MLC movement and dosimetric error occurred in regular delivery. Several real patients under treatments were also tracked to test the usefulness of pcsr QA through comparisons between them. We used dynalog file viewer (DFV) and Dynalog file to analyze position and speed of individual MLC leaf. The gamma pass rate from portal dosimetry for different gamma criteria was analyzed to evaluate analyze dosimetric accuracy. Results and Discussion: The maxRMS of MLC position error for all plans were all within the tolerance limit of < 0.35 cm and the positional variation of maxPEs for both pcsr and real plans were observed very stable over the research session. Daily variations of maxRMS of MLC speed error and gamma pass rate for real VMAT plans were observed very comparable to those in their pcsr plans in good acceptable fluctuation. Conclusion: We believe that the newly proposed pcsr QA would be useful and helpful to predict the mid-term quality of real VMAT treatment delivery.

Quality Assurance of Volumetric Modulated Arc Therapy Using the Dynalog Files (다이나로그 파일을 이용한 부피세기조절회전치료의 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Kim, Yon-Lae;Yang, Hyung-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.577-585
    • /
    • 2016
  • The purpose of this study is to evaluate the accuracy of beam delivery QA software using the MLC dynalog file, about the VMAT plan with AAPM TG-119 protocol. The Clinac iX with a built-in 120 MLC was used to acquire the MLC dynalog file be imported in MobiusFx(MFX). To establish VMAT plan, Oncentra RTP system was used target and organ structures were contoured in Im'RT phantom. For evaluation of dose distribution was evaluated by using gamma index, and the point dose was evaluated by using the CC13 ion chamber in Im'RT phantom. For the evaluation of point dose, the mean of relative error between measured and calculated value was $1.41{\pm}0.92%$(Target) and $0.89{\pm}0.86%$(OAR), the confidence limit were 3.21(96.79%, Target) and 2.58(97.42%, OAR). For the evaluation of dose distribution, in case of $Delta^{4PT}$, the average percentage of passing rate were $99.78{\pm}0.2%$(3%/3 mm), $96.86{\pm}1.76%$(2%/2 mm). In case of MFX, the average percentage of passing rate were $99.90{\pm}0.14%$(3%/3 mm), $97.98{\pm}1.97%$(2%/2 mm), the confidence limits(CL) were in case of $Delta^{4PT}$ 0.62(99.38%, 3%/3 mm), 6.6(93.4%, 2%/2 mm), in case of MFX, 0.38(99.62%, 3%/3 mm), 5.88(94.12%, 2%/2 mm). In this study, we performed VMAT QA method using dynamic MLC log file compare to binary diode array chamber. All analyzed results were satisfied with acceptance criteria based on TG-119 protocol.

Assessment for the Utility of Treatment Plan QA System according to Dosimetric Leaf Gap in Multileaf Collimator (다엽콜리메이터의 선량학적엽간격에 따른 치료계획 정도관리시스템의 효용성 평가)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Kim, Woo Chul;Ji, Young Hoon;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.