• 제목/요약/키워드: Dye-Sensitized Solar Cells

검색결과 456건 처리시간 0.03초

설계적 특성 개선을 위한 Ag 그리드를 가지는 대면적 염료감응형 태양전지의 새로운 디자인 (Thle New Design of a Large Area Dye-sensitized Solar Cell with Ag Grid for Improving a Design Characteristics)

  • 최진영;이임근;홍지태;김미정;김휘영;김희제
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.123-127
    • /
    • 2007
  • Up sizing of dye-sensitized solar cell(DSC) is the important technology to bring about commercialization of DSC. Several studies to obtain a stable large area DSC have been investigated in overseas laboratories, but have been hardly done in our country. In this study, up sizing technology of dye sensitized solar cells(DSCs) was investigated. We investigated low dark current materials for the current collecting grid. From the result, a new DSC module with metal grid was designed, and fabricated. For a new interconnection, both working and counter electrodes are alternately coupled on 10[cm]$\times$7[cm] substrate. We have achieved 68% of fill factor and photoelectric conversion efficiency of around 2.6% as the best results of new designed DSC structure.

형광체 첨가에 따른 염료감응형 태양전지의 효율 변화 (Efficiency Variation of Dye-Sensitized Solar Cell Influenced by Phosphor Additives)

  • 정성훈;황경준;강성원;정형곤;김선일;이재욱
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.227-233
    • /
    • 2009
  • 최근 태양전지에 대한 관심이 급증하면서 염료감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)에 관한 연구가 활발히 진행되고 있다. 염료감응형 태양전지에 관한 연구는 크게 $TiO_2$ 나노 결정 소재, 염료, 전해질 및 전도성 기판 등 4가지 분야로 나눌 수 있다. 본 연구에서는 염료를 흡착할 수 있는 나노결정성 $TiO_2$를 합성한 후, 이를 광전극용 페이스트(paste)에 다양한 형광물질(phosphor)의 종류 및 함량을 조절하여 첨가함으로써 염료감응형 태양전지의 효율에 미치는 영향을 조사하였다. 실험결과 400 nm 입자크기의 YAG계 형광체 0.5%가 첨가된 페이스트를 사용할 경우, 에너지 변환효율이 최대 8.31%에 도달함을 확인할 수 있었다.

Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells

  • Abdullah, Muhammad Imran;Janjua, Muhammad Ramzan Saeed Ashraf;Mahmood, Asif;Ali, Sajid;Ali, Muhammad
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2093-2098
    • /
    • 2013
  • Density functional theory (DFT) was used to determine the ground state geometries of indigo and new design dyes (IM-Dye-1 IM-Dye-2 and IM-Dye-3). The time dependant density functional theory (TDDFT) was used to calculate the excitation energies. All the calculations were performed in both gas and solvent phase. The LUMO energies of all the dyes were above the conduction band of $TiO_2$, while the HOMOs were below the redox couple (except IM-Dye-3). The HOMO-LUMO energy gaps of new design dyes were smaller as compared to indigo. All new design dyes were strongly red shifted as compared to indigo. The improved light harvesting efficiency (LHE) and free energy change of electron injection ${\Delta}G^{inject}$ of new designed sensitizers revealed that these materials would be excellent sensitizers. The broken coplanarity between the benzene near anchoring group having LUMO and the last benzene attached to TPA unit in all new design dyes consequently would hamper the recombination reaction. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.

Bulk Heterojunction Solar Cell using Ru Dye Attached PCBM

  • Il-Su Park;Jae-Keun Hwang;Yongseok Jun;Donghwan Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.421-426
    • /
    • 2024
  • Ru dye (Z-907) is a crucial photosensitizing material in dye-sensitized solar cells (DSSCs). To enhance the utilization of Ru dye's photosensitizing properties in bulk heterojunction solar cells, a method was developed to synthesize phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles that are chemically linked to Ru dye. PCBM contains a methoxy (-OCH3) group, whereas Ru dye incorporates a carboxyl group (-COOH) within its molecular structure. By exploiting these complementary functional groups, a successful bond between Ru dye and PCBM was established through an anhydride functional group. The coupling of PCBM with Ru dye results in a modification of the energy levels, yielding lower LUMO (3.8 eV) and HOMO (6.1 eV) levels, compared with the LUMO (3.0 eV) and HOMO (5.2 eV) levels of Ru dye alone. This configuration potentially facilitates efficient electron transfer from Ru dye to PCBM, alongside promoting hole transfer from Ru dye to the conducting polymer. Consequently, the bulk heterojunction solar cells incorporating this Ru dye-PCBM configuration demonstrate superior performance, with an open circuit voltage (Voc) of 0.62 V, short circuit current (Jsc) of 0.63 mA cm-2, fill factor (FF) of 65.6%, and a photovoltaic conversion efficiency (η) of 0.25%.

다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용 (Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells)

  • 김휘동;안지영;김수형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF

Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells

  • Rahman, Md. Mahbubur;Kim, Hyun-Yong;Jeon, Young-Deok;Jung, In-Soo;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2765-2768
    • /
    • 2013
  • The effect of $TiO_2$ nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density ($J_{sc}$) and the open-circuit potential ($V_{oc}$) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased $J_{sc}$ and $V_{oc}$ for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.

Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications

  • Kim, Ji-Hye;Jang, Ji-Yeon;Kim, Sung-Chul;Han, Chi-Hwan;Kim, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1204-1208
    • /
    • 2012
  • A new photoelectrode composed of $Sb_6O_{13}$ nanoparticles with the size of 20-30 nm has been prepared via thermolysis of a colloidal antimony pentoxide tetrahydrate ($Sb_2O_5{\cdot}4H_2O$) suspension. The $Sb_6O_{13}$ electrode showed good semiconducting properties applicable to dye-sensitized solar cells (DSSCs); the energy band gap was estimated to be $3.05{\pm}0.5$ eV and the position of conduction band edge was close to those of $TiO_2$ and ZnO. The DSSC assembled with the $Sb_6O_{13}$ photoelectrode and a conventional ruthenium-dye (N719) exhibited the overall photo-current conversion efficiency of 0.74% ($V_{oc}$ = 0.76 V, $J_{sc}=1.99\;mAcm{-2}$, fill factor = 0.49) under AM 1.5, $100\;mWcm^{-2}$ illumination.

$TiO_2$ 입자 크기에 따른 염료감응태양전지의 성능 변화 ($TiO_2$ Particle Size Effect on the Performance of Dye-Sensitized Solar Cell)

  • 김바울;박미주;이성욱;최원석;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.145-146
    • /
    • 2007
  • Dye-Sensitized Solar Cell Solar cells(DSSC) were appeared for overcoming global environmental problems and lack of fossil fuel problems. And it is one of study field that is getting into the spotlight lately because manufacturing method is more simple and inexpensive than existing silicon solar cells. Oxide semiconductor is used for adsorption of dye and electron transfer in DSSC study, and $TiO_2$ is used most usually. Overall light conversion efficiency is changed by several elements such as $TiO_2$ particle size and structure, pore size and shape. In this study, we report the solar cell performance of titania$(TiO_2)$ film electrodes with various particle sizes. $TiO_2$ particle size was 16 nm, 25 nm, and mixture of 16nm and 25 nm, and manufactured using Doctor blade method. When applied each $TiO_2$ film to DSSC, the best efficiency was found at 16nm of $TiO_2$ particle. 16nm of $TiO_2$ particle has the highest efficiency compared to the others, because particles with smaller diameters would adsorb more dye due to larger surface area. And in case of the mixture of 16nm and 25 nm, the surface area was smaller than expected. It is estimated that double layer is adsorbed a large amount of chemisorbed dye and improved light scattering leading due to efficiency concentration light than mono layer.

  • PDF

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

염료감응형 태양전지의 염료 착색 온도의 영향에 관한 연구 (The effect of dye coloring temperature on the dye-sensitized solar cells)

  • 이경준;서현웅;손민규;김정훈;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.422-424
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitizedsolar cells(DSC) have been very economical and easy method to convert solar energy to electricity. DSC can reach low costs in future outdoor power applications. However, to commercialize the DSC, there are still many shortages to overcome. When the DSC is commercialized in the near future, the productivity is an important factor. In the process of soaking in a dye, it usually takes $12\sim24$ hours. In this study, we varied the dye coloring temperature from $0^{\circ}C$ to $60^{\circ}C$. At the temperature of $40^{\circ}C$, DSC cell showed the best performance. We also expect the reduction of the time soaking in a dye. Counter electrode surface of DSC is deposited by RF magnetron sputtering under the conditions of Ar $2.8{\times}10^{-3}$ torr, RF power of 120W and substrate temperature of $100^{\circ}C$.

  • PDF