Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.7.2093

Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells  

Abdullah, Muhammad Imran (Institute of Chemistry, University of the Punjab)
Janjua, Muhammad Ramzan Saeed Ashraf (Department of Chemistry, University of Sargodha)
Mahmood, Asif (Department of Chemistry, University of Sargodha)
Ali, Sajid (Department of Physics, Agriculture University)
Ali, Muhammad (Department of Physics, Umea University)
Publication Information
Abstract
Density functional theory (DFT) was used to determine the ground state geometries of indigo and new design dyes (IM-Dye-1 IM-Dye-2 and IM-Dye-3). The time dependant density functional theory (TDDFT) was used to calculate the excitation energies. All the calculations were performed in both gas and solvent phase. The LUMO energies of all the dyes were above the conduction band of $TiO_2$, while the HOMOs were below the redox couple (except IM-Dye-3). The HOMO-LUMO energy gaps of new design dyes were smaller as compared to indigo. All new design dyes were strongly red shifted as compared to indigo. The improved light harvesting efficiency (LHE) and free energy change of electron injection ${\Delta}G^{inject}$ of new designed sensitizers revealed that these materials would be excellent sensitizers. The broken coplanarity between the benzene near anchoring group having LUMO and the last benzene attached to TPA unit in all new design dyes consequently would hamper the recombination reaction. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.
Keywords
Dye-sensitized solar cells; Indigo; Light harvesting efficiency; Electron injection; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Regan, B. O.; Gratzel, M. Nature 1991, 353, 737-740.   DOI
2 Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835-16847.   DOI   ScienceOn
3 Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv Mater 2009, 21, 4087-4108.   DOI   ScienceOn
4 Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M. J Phys Chem C 2008, 112, 11591-11599.   DOI   ScienceOn
5 Wong, B. M.; Codaro, J. G. J. Chem. Phys. 2008, 129, 214703- 214710.   DOI   ScienceOn
6 Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218-12219.   DOI   ScienceOn
7 Ferrere, S.; Zaban, A.; Gregg, B. J. Phys. Chem. B 1997, 101, 4490-4493.   DOI   ScienceOn
8 Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338-2345.   DOI   ScienceOn
9 Liu, D.; Fessenden, R. W.; Hug, G. L.; Kamat, P. V. J. Phys. Chem. B 1997, 101, 2583-2590.   DOI   ScienceOn
10 Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269-277.   DOI   ScienceOn
11 Sayama, K.; Tsukagochi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363- 1371   DOI   ScienceOn
12 Frisch, M. J. et al. Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT, 2009.
13 Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818-4822.   DOI   ScienceOn
14 Nalwa, H. S. Handbook of advanced electronic and photonic materials and devices; Academic: San Diego, 2001.
15 Wichien, S.; Samarn, S.; Vittaya, A. J. Photochem. Photobiol. A 2012, 236, 35-40.   DOI   ScienceOn
16 Preat, J.; Michaux, C.; Jacquemin, D.; Perpète, E. A. J. Phys. Chem. C 2009, 113, 16821-16833.   DOI   ScienceOn
17 Tomkinson John, Bacci Mauro, Picollo Marcello, Colognesi Daniele. Vib. Spectrosc. 2009, 50, 268-276.   DOI   ScienceOn
18 Zollinger, hristie, 2007 Methods of Determining Indigo: Handbook of Natural Colorants Edited by Thomas Bechtold and Rita $Mussak{\copyright}$2009 John Wiley & Sons: Ltd., 2003; p 106-107.