• Title/Summary/Keyword: Dye analysis

Search Result 558, Processing Time 0.026 seconds

Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products

  • Khan, Shellina;Joshi, Navneet
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.561-570
    • /
    • 2020
  • In the present study, dye decolorizing bacteria were isolated from water and soil samples, collected from textile industries in Jodhpur province, India. Two bacterial species namely, Bacillus pumilis and Paenibacillus thiaminolyticus were screened and identified based on biochemical characterization. The degradation efficiency of these two microorganisms was compared through optimization of pH, incubation time, initial dye concentration and inoculum size. B. pumilis and P. thiominolyticus were able to degrade 61% and 67% Red HE3B, 81% and 75% Orange F2R, 49.7% and 44.2% Yellow ME4GL and 61.6% and 59.5% Blue RC CT dyes of 800mg/l concentration respectively. The optimum pH and time were found to be 8 within 24 hours. The FT-IR analysis confirmed that microorganisms were able to degrade toxic azo dyes into a non-toxic product as proved through structural modifications to analyze chemical functions in materials by detecting the vibrations that characterize chemical bonds. It is based on the absorption of infrared radiation by the microbial product. Therefore, Bacillus pumilis and Paenibacillus thiaminolyticus are a promising tool for decolorization of dyes due to its potential to effectively decolorize higher azo dye concentrations (10-800 mg/L) and can be exploited for bioremediation.

Response surface analysis of removal of a textile dye by a Turkish coal powder

  • Khataee, Alireza;Alidokht, Leila;Hassani, Aydin;Karaca, Semra
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.291-308
    • /
    • 2013
  • In the present study, an experimental design methodology was used to optimize the adsorptive removal of Basic Yellow 13 (BY13) using Turkish coal powder. A central composite design (CCD) consisting of 31 experiments was employed to evaluate the simple and combined effects of the four independent variables, initial dye concentration (mg/L), adsorbent dosage (g/L), temperature ($^{\circ}C$) and contact time (min) on the color removal (CR) efficiency (%) and optimizing the process response. Analysis of variance (ANOVA) showed a high coefficient of determination value ($R^2=0.947$) and satisfactory prediction of the polynomial regression model was derived. Results indicated that the CR efficiency was not significantly affected by temperature in the range of $12-60^{\circ}C$. While all other variables significantly influenced response. The highest CR (95.14%), estimated by multivariate experimental design, was found at the optimal experimental conditions of initial dye concentration 30 mg/L, adsorbent dosage 1.5 g/L, temperature $25^{\circ}C$ and contact time 10 min.

Formation of Reactive Oxygen Species and Cr(V) Entities in Chromium(VI) Exposed A549 Cells (크롬 6가 투여 후 A549 세포에서의 Reactive Oxygen Species와 크롬 5가의 발생)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.49-57
    • /
    • 1996
  • The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, $K_2Cr_2O_7$ ) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile flow cytometer was used to detect the formation of reactive oxygen species after $K_2Cr_2O_7$ was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 gM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100 and 200 gM Cr(VI) to the A549 cells in suspension. Two other EPR 'signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. radical value.

  • PDF

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Simultaneous Analysis of the Coloring Compounds in Indigo, Phellodendron bark, and Madder Dye Using HPLC-DAD-MS

  • Ahn, Cheunsoon;Zeng, Xia;Obendorf, S. Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Indigotin, indirubin, berberine, palmatine, alizarin, and purpurin are major pigments of indigo plant, Phellodendron bark, and madder. The six pigments were examined using the HPLC-DAD-MS instrument for the purpose of the simultaneous detection of the pigments in a single sample run. The HPLC-DAD-MS method examined the individual pigment solutions in DMSO, a solution containing 6 pigments, and the DMSO extract of the silk dyed with a dye solution of 5 pigments excluding indirubin. The retention times of the HPLC chromatograms, ${\lambda}_{max}$ of the uv-vis absorption bands in the DAD analyses, and the molecular ions detected for the compound peaks in the MSD analyses were consistent throughout the analyses of individual pigment solutions, mixed pigment solutions, and dye extracted from silk dyeing. The developed instrumental method of the simultaneous detection of six pigments can identify dye in an exhumed textile if the textile is dyed using any one (or multiple) pigments of indigo, Phellodendron bark, or madder plant.

A Study on the Fabrication of Dye-Sensitized Solar Cells Consisting of Ti Electrodes by Electron-beam Evaporation Method (전자빔 증착법에 의한 티타늄 전극 구조 염료 태양전지 제작에 관한 연구)

  • Kim, Yun-Gi;Shim, Choung-Hwan;Kim, Hyun-Gyu;Sung, Youl-Moon;Kim, Dong-Hyun;Lee, Hae-June;Park, Chung-Hoo;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.754-758
    • /
    • 2010
  • In general, Dye-sensitized Solar Cells(DSCs) consist of the nanocrystalline titanium dioxide($TiO_2$) layer which is fabricated on a transparent conductive oxide(TCO) layer such as $F/SnO_2$ glass, a dye adhered to the $TiO_2$, an electrolyte solution and platinum-coated TCO. Among these components, two TCO substrates are estimated to be about 60% of the total cost of the DSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, TCO-less DSCs consisting of titanium electrodes were investigated. The titanium electrode is deposited on top of the porous $TiO_2$ layer using electron-beam evaporation process. The porosity of the titanium electrode was found out by the SEM analysis and dye adhesion. As a result, when the thickness of the titanium electrode increased, the surface resistance decreased and the conversion efficiency increased relatively.

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Dyeability of the Fabrics dyed with Herb Extracts (허브 추출물에 의한 직물의 염색 특성)

  • Goo, Sin Ae;Kang, In Sook;Bae, Hyun Sook
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • This study examined the dyeability of fabrics dyed with rosemary, mint, sage, and thyme herb extracts. The herb extracts were pulverized and characterized by UV and FT-IR analysis. Dyeing properties of herb colorants on cotton, silk and wool fiber and effect of dyeing conditions on dye uptake were compared. The constituents of four different herbs were shown to be similar to each other. The dye uptake of rosemary and sage were shown to be larger than those of mint and thyme regardless of the fiber types. Affinity of herb colorants to protain fibers was higher than to cellulose fiber. Compared with silk and wool, the dyeability of cotton was the worse, the dye uptake of silk and wool fibers were increased along with dyeing time and dyeing temperature. As the dye uptake increased with increasing of the dye concentration, and its isothermal adsorption curves were langmuir type, indicating that ionic bonding was involved in the adsorption of herb colorants to the fibers.

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

Evaluation of Cell Viability and Delivery Efficiency in Electroporation System According to the Concentrations of Propidium Iodide and Yo-Pro-1 (전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.898-906
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting fluorescent dye and using proper concentration of fluorescent dye to use evaluation of cell viability and fluorescent dye delivery efficiency. Propidium iodide and Yo-Pro-1 were used as fluorescent dyes. In the evaluation of cell viability and the efficiency of delivery using Propidium Iodide and Yo-Pro-1, the histogram of each fluorescent dye was different depending on the type of fluorescent dye and the concentration used. These results were related to the characteristics of the fluorescent dyes used. This was related to the properties of the fluorescent dyes used. From these results, it was found that the analytical results depending on the characteristics of the fluorescent dyes used in the cell analysis. The effect of the fluorescent dye on the cell was confirmed, but it was confirmed that it did not affect the analysis result. In addition, the influence of interference between fluorescent signals was confirmed when two or more kinds of fluorescent dyes were used for analysis. The higher the concentration of Yo-Pro-1 was, the larger the effect of interference was, and the concentration of Propidium Iodide did not affect the interference of fluorescence signal. This study confirmed that the evaluation of the cell viability and the evaluation of the delivery efficiency were influenced by the type and concentration of the fluorescent dyes and it was related to the characteristics of the fluorescent dyes. Based on the results, appropriate concentrations of fluorescent dyes suitable for evaluation of cell viability and delivery efficiency were suggested.