• Title/Summary/Keyword: Dust removal

Search Result 194, Processing Time 0.022 seconds

Performance Characteristics of Louver Dust Collectors (루버 집진기의 성능특성)

  • Woo, Sang-Hee;Kim, Jong Bum;Park, Tong-Il;Yook, Se-Jin;Kwon, Soon Bark;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • A large amount of wear dust generated during train operation is a major dust source in urban railway tunnels. To check possibility of a louver dust collector for the removal of dust in the railway tunnel, five louver dust collector models were designed and their performance was tested in a wind tunnel. JIS Z 8901 Class 8 dust was used as a test dust. Pressure drop and particle collection efficiency were evaluated with the face velocity ranging from 1 m/s to 4 m/s. At this low velocity range, particle collection efficiency of the louver dust collector was found to be insensitive to air velocity and design parameters. Pressure drop was under 40 Pa, and $PM_{10}$ and $PM_{2.5}$ collection efficiencies were approximately 50% and 30%, respectively.

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

Effect of LED Light Quality Treatment on the Functional Optimization of Foliage Plant (LED 광질이 관엽식물의 기능성 최적화에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Ann, Seoung-Won;Choi, Won-Chun;Lee, Myung-Won;Lee, Kook-Han;Liu, Xiao-Ming
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.633-640
    • /
    • 2012
  • White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in $Spathiphyllum$ and lowest in $Dieffenbachia$. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.

A Study on Distribution Behavior of Ni and Sb in Reduction products of Cu Matte Converting (동 매트제련의 반응생성물중 Ni와 Sb의 분배거동에 관한 연구)

  • 김영진;이광막;김영홍
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.44-50
    • /
    • 1999
  • The sbdy iwestlgaled ihc propa-ties of Lhe dust\ulcorner rrom fe~~oallomya ~~ufacturTeh. e chemical composition, cornpasitlon material, p d c l e sire md shapes of the bulk dust, sired dust and magnetically separated durl were mvesligaled. As the re\ulcornerulL, we suppose that the dust from &gh Carbon Fenama~~gunesMc anuiact~vingP rocess is not sufiicient as solulce material of Mn because of ale low Mn canlenl (13.5%) and complicaled composition mate~ial. The dust from Bug F!lter or AOD Proccss is mi~inlym ade up of 0.2-2 pm Mn30, (Hausmam~iu)p iutlde in spherical shape and thc Mn content is 63.190.The dust from Cooler of AOD Process is inninly made up of coarse Ca(O1-Or)zM. n,FeyO,, SiO, and fine Mn30d.

  • PDF

Preparation of Electrode Coated with Activated Carbon for Dust Removal (분진제거를 위한 활성탄 전극판의 제조)

  • Kim, Kwang Soo;Park, Jung O;Jun, Tae Hwan;Kim, Ilho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.815-820
    • /
    • 2013
  • The purpose of this research is to prepare the aluminum electrode coated with activated carbon for removing air pollution dust. The experiments were studied on the selection of optimal polymer for binding aluminum plate with powdered activated carbon, preventing the pore blocking of activated carbon from polymer binder, and the dust treatability for the prepared activated carbon electrode. The optimal adhesive for coating activated carbon on an electric aluminum plate was polyvinyl acetate (PVA) with vinyl functional group. For the opening of the blocked pore with polymer, it was very effective to embed polymer solvent in pore of activated catbon firstly before mixing activated carbon with PVA, and then to devolatilize the embedded solvent of carbon pore at high temperature. The mass of trapped dust on aluminum electrode coated with activated carbon was about double of the trapped one on just aluminum electrode.

Experiment of Air-Shower to Reduce Particulate Matter in Apartment Housing (공동주택에서 미세먼지 저감을 위한 에어샤워 성능실험)

  • PARK, JIN CHUL;Chung, Hong Goo
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • High levels of fine dust is an increasing health concern in major cities such as Seoul. To improve the indoor air quality of apartments, this study examined the ability of an air shower system installed in an apartment unit to remove fine dust (as defined by ISO 12103-A2) from various clothing items of building occupants entering their apartment. Results of the experiment indicate that an air shower system is effective in removing final dust from clothing after one pass through the system. The fine dust removal efficiency for various clothing items was 74% for a dress suit, 70.6% for hiking clothes, 63.3% for knit-wear, 50.5% for a cotton t-shirt, and 38.8% for a coat. Fine dust removal efficiency increased with a second and third pass through the air shower system by an average of 9.1 and 13.9 percentage points respectively compared to a single pass through the system.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Preparation of KCl through Removal of Heavy Metals from Chlorine By-Pass Dust (염소 바이패스 더스트를 이용한 염화칼륨 제조 및 중금속 제거)

  • Yun, Youngmin;Yeom, Nari;Lee, Kabsoo;Eom, Seonhui;Lee, Yonghyun;Chu, Yongsik
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.11-17
    • /
    • 2017
  • Many problems are occurred by using industrial by-product and municipal solid waste in the cement manufacturing process. The main components of chlorine by-pass dust generated by the use of the wastes are $K^+$, $Cl^-$, and a slight amount of heavy metals is also contained. In terms of waste recycling, it is necessary to eliminate the heavy metals. Therefore, in this study, the experiments for the removal of heavy metals from KCl which was produced by chlorine by-pass dust were conducted. In order to find optimum conditions for the removal of heavy metals, we have controlled the amount of water and precipitator. The type and concentration of heavy metals in KCl were analyzed. The concentration of heavy metals decreased as amount of precipitator increased. The heavy metals such as Pb, Cd, and As were not detected in dust A and B, when the mixing ratios between dust A(B) and water were controlled to be 1:2 (1:2, 1:3.5) with the addition of 3% precipitator (NaOCl).

Development and Evaluation of Coal-dust Water Flocculant using Chitosan (키토산을 이용한 탄진수 응집제 개발 및 평가)

  • Hong, Woong-Gil;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.139-142
    • /
    • 2021
  • Coal-fired power plants use coal as the main raw material, and when a coal is moved, a dust generation and spontaneous ignition of coal occur. To prevent this, water is sprayed. As a result, wastewater called "coal-dust water" flows out of coal dust and water mixed together, causing environmental pollution. In this study, in order to solve this problem, we developed a natural flocculant that can purify water by aggregating fine dust using chitosan and tried to prove its applicability. It was found that the optimum flocculation concentration was 4 ppm by adding various concentrations of flocculant to the coal-dust water, and it was confirmed that the developed material had very good coal-dust flocculation capacity through permeability and coal-dust removal efficiency. In addition, the cytotoxicity of the flocculant was evaluated through the MTT assay and it was found that there is no toxicity at all. We believe that the flocculant developed in this study can effectively adsorb coal-dust without affecting human and natural ecosystems.