DOI QR코드

DOI QR Code

Development and Evaluation of Coal-dust Water Flocculant using Chitosan

키토산을 이용한 탄진수 응집제 개발 및 평가

  • Hong, Woong-Gil (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jeong, Gyeong-Won (Department of Bioenvironmental & Chemical Engineering, Chosun College of Science and Technology)
  • 홍웅길 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 정경원 (조선이공대학교 생명환경화공과)
  • Received : 2021.01.08
  • Accepted : 2021.01.28
  • Published : 2021.04.10

Abstract

Coal-fired power plants use coal as the main raw material, and when a coal is moved, a dust generation and spontaneous ignition of coal occur. To prevent this, water is sprayed. As a result, wastewater called "coal-dust water" flows out of coal dust and water mixed together, causing environmental pollution. In this study, in order to solve this problem, we developed a natural flocculant that can purify water by aggregating fine dust using chitosan and tried to prove its applicability. It was found that the optimum flocculation concentration was 4 ppm by adding various concentrations of flocculant to the coal-dust water, and it was confirmed that the developed material had very good coal-dust flocculation capacity through permeability and coal-dust removal efficiency. In addition, the cytotoxicity of the flocculant was evaluated through the MTT assay and it was found that there is no toxicity at all. We believe that the flocculant developed in this study can effectively adsorb coal-dust without affecting human and natural ecosystems.

석탄 화력발전소는 석탄을 주원료로 사용하고 있으며, 석탄 이동 시에 석탄의 분진 및 자연 발화가 발생하게 되는데, 이를 방지하기 위해 물을 분사하는 작업을 수행한다. 이로 인해 석탄의 분진과 물이 함께 섞여 흘러나오는 일명 '탄진수(coal-dust water)'라고 불리는 폐수가 흘러나와 환경오염을 초래한다. 본 연구에서는 이러한 문제점을 해결하기 위해 미세한 분진까지 응집하여 물을 정화할 수 있는 키토산 기반의 천연 응집제를 개발하고, 그 응용성을 입증하고자 하였다. 탄진수에 다양한 농도의 응집제를 투여하여 최적의 흡착농도가 4 ppm임을 규명하였고, 투과도 및 탄진 제거효율을 통해 개발된 물질의 탄진 응집능이 매우 우수함을 확인하였다. 또한, MTT assay를 통해 응집제의 세포독성을 평가하여 독성이 전혀 없음을 입증함으로써, 본 연구에서 개발된 응집제가 인간 및 자연 생태계에 영향을 주지 않고 효과적으로 탄진을 응집할 수 있는 물질임을 규명하였다.

Keywords

References

  1. S. H. Lee, M. S. Wang, S. B. Wee, and Y. D. Son, A study on the improvement of optimal load range for sliding pressure operation of coal-fired power plant, J. Inst. Korean Electr. Electron. Eng., 23, 675-680 (2019).
  2. M. C. Russell, J. H. Belle, and Y. Liu, The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment, J. Air Waste. Manag. Assoc., 67, 3-16 (2017). https://doi.org/10.1080/10962247.2016.1170738
  3. W. G. Hong, G. W. Jeong, and J. W. Nah, Evaluation of hyaluronic acid-combined ternary complexes for serum-resistant and targeted gene delivery system, Int. J. Biol. Macromol., 115, 459-468 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.053
  4. G. W. Jeong, S. C. Park, C. Choi, J. P. Nam, T. H. Kim, S. K. Choi, J. K. Park, and J. W. Nah, Anticancer effect of gene/peptide co-delivery system using transferrin-grafted LMWSC, Int. J. Pharm., 488, 165-173 (2015). https://doi.org/10.1016/j.ijpharm.2015.04.057
  5. J. P. Nam and J. W. Nah, Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy, Carbohydr. Polym., 135, 153-161 (2016). https://doi.org/10.1016/j.carbpol.2015.08.053
  6. M. K. Yoo, S. K. Kang, J. H. Choi, I. K. Park, H. S. Na, H. C. Lee, E. B. Kim, N. K. Lee, J. W. Nah, Y. J. Choi, and C. S. Cho, Targeted delivery of chitosan nanoparticles to Peyer's patch using M cell-homing peptide selected by phage display technique, Biomaterials, 31, 7738-7747 (2010). https://doi.org/10.1016/j.biomaterials.2010.06.059
  7. Q. Zia, M. Tabassum, Z. Lu, M. T. Khawar, J. Song, H. Gong, J. Meng, Z. Li, and J. Li, Porous poly(L-lactic acid)/chitosan nanofibres for copper ion adsorption, Carbohydr Polym., 227, 115343 (2020). https://doi.org/10.1016/j.carbpol.2019.115343
  8. U. Habiba, A. M. Afifi, A. Salleh, and B. C. Ang, Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr(6+), Fe(3+) and Ni(6+), J. Hazard. Mater., 322, 182-194 (2017). https://doi.org/10.1016/j.jhazmat.2016.06.028
  9. K. C. M. Kwok, L. F. Koong, T. Al Ansari, and G. McKay, Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan, Environ. Sci. Pollut. Res. Int., 25, 14734-14742 (2018). https://doi.org/10.1007/s11356-018-1501-9
  10. H. Moussout, H. Ahlafi, M. Aazza, O. Zegaoui, and C. El Akili, Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan, Water Sci. Technol., 73, 2199-2210 (2016). https://doi.org/10.2166/wst.2016.075
  11. S. Dandil, D. Akin Sahbaz, and C. Acikgoz, Adsorption of Cu(II) ions onto crosslinked chitosan/waste active sludge char (WASC) beads: Kinetic, equilibrium, and thermodynamic study, Int. J. Biol. Macromol., 136, 668-675 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.063
  12. C. Zhang, H. Wen, Y. Huang, and W. Shi, Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres, Int. J. Biol. Macromol., 97, 635-641 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.088