• Title/Summary/Keyword: Dust Analysis

Search Result 940, Processing Time 0.027 seconds

Mechanical Properties of PVC Composite Containing Iron Dust (제철 분진을 함유한 PVC 복합체 수지의 기계적 성질)

  • Nah, Jae-Woon;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.370-376
    • /
    • 1998
  • Mechanical properties of PVC[poly(vinylchloride)] composites containing the dust from blast and converter (Kwangyang Iron Co.) were investigated as a function of dust content. Tensile strength is increased, when the blast dust is mixed with PVC to the extent of 8.83wt % and impact strength is not significantly changed. From these results, it is suggested that blast dust containing CaO, SiO, MgO, $A1_2O_3$ and metallugical particle is compatible with PVC. Thermogravimetric analysis(TGA) showed that residual weight(%) at temperature $600^{\circ}C$ increased with the amount of blast dust and differential scanning calorimetry(DCS) showed that the thermal stability of PVC composite was increased when the weight ratio of blast dust was 8.83wt % X-ray diffractometry measurement also showed their blends and structures.

  • PDF

Application of Chemical Dust Suppressants for Control of Fugitive Dust in Ash pond of Thermal Power Plant (화력발전소의 회처리장 내 비산먼지 저감을 위한 화학적 먼지억제제 적용 연구)

  • Choi, Yu-Lim;Choi, Jong-Soo;Yang, Jae-Kyu;Park, Sun-Hwan;Joo, Hyun Soo;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.82-89
    • /
    • 2018
  • The objective of this study is to evaluate efficiencies of chemical suppressants for control of fugitive dust in ash pond of thermal power plant. In this study, $MgCl_2$, PAM (polyacrylamide), and PVA (poly vinyl alcohol) that are generally applied to suppression of fugitive dust generated from unpaved road, coal mining, storage piles and etc, were employed as chemical dust suppressants. The coal ash (coal combustion residuals) were sampled from the ash pond of Yeongheung power division in Incheon, South Korea. The characterization of the sample including particle size distribution, pH, $pH_{PZC}$ and pore volume as well as XRF analysis were carried out. The suppressant treated-samples were investigated with the wind tunnel experiments to estimate and compare the effect of suppressants on stabilization of the surface of coal ash samples. According to the results, the stability of suppressant-treated samples were significantly improved compared to water-treated samples. Among the three kinds of suppressants, PAM and PVA showed higher efficiencies and cost saving than $MgCl_2$.

Design and Function Analysis of Dust Measurement Platform based on IoT protocol (사물인터넷 프로토콜 기반의 미세먼지 측정 플랫폼 설계와 기능해석)

  • Cho, Youngchan;Kim, Jeongho
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.79-89
    • /
    • 2021
  • In this paper, the fine dust (PM10) and ultrafine dust (PM2.5) measurement platforms are designed to be mobile and fixed using oneM2M, the international standard for IoT. The fine dust measurement platform is composed and designed with a fine dust measurement device, agent, oneM2M platform, oneM2M IPE, and monitoring system. The main difference between mobile and fixed is that the mobile uses the MQTT protocol for interconnection between devices and services without blind spots based on LTE connection, and the fixed uses the LoRaWAN protocol with low power and wide communication range. Not only fine dust, but also temperature, humidity, atmospheric pressure, volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and noise data related to daily life were collected. The collected sensor values were managed using the common API provided by oneM2M through the agent and oneM2M IPE, and it was designed into four resource types: AE and container. Six functions of operability, flexibility, convenience, safety, reusability, and scalability were analyzed through the fine dust measurement platform design.

Mineralogical Comparison between Asian Dust and Bedrock in Southern Mongolia (황사와 몽골 남부 기반암의 광물학적 비교)

  • Gi Young, Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.397-407
    • /
    • 2022
  • Mineralogical analysis of the bedrock of the Gobi Desert in southern Mongolia, the source of Asian dust, was conducted to trace the geological origin of the constituent minerals of Asian dust. The bedrock of the source of Asian dust consists of Paleozoic volcanics and volcaniclastic sedimentary rocks, Paleozoic granitic rocks, and Mesozoic sedimentary rocks. Paleozoic volcanics and volcaniclastic sediments lithified compactly, underwent greenschist metamorphism, and deformed to form mountain ranges. Mesozoic sedimentary rocks fill the basin between the mountain ranges of Paleozoic strata. In comparison to Paleozoic volcanic and sedimentary rocks, Mesozoic sedimentary rocks have lower contents of chlorite and plagioclase, but high contents of clay minerals including interstratified illite-smectite, smectite, and kaolinite. Paleozoic granites characteristically contain amphibole and biotite. Compared with the mineral composition of bedrock in source, Asian dust is a mixture of detrital particles originating from Paleozoic and Mesozoic bedrocks. However, the mineral composition of Mesozoic sedimentary rocks is closer to that of Asian dust. Less lithified Mesozoic sedimentary rocks easily disintegrated to form silty soils which are deflated to form Asian dust.

A Study on Mineral Carbonation of Chlorine Bypass Dust with and without Water Washing (수세 유무에 따른 염소 바이패스 분진의 광물 탄산화 연구)

  • Hye-Jin Yu;Woo Sung Yum
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.18-24
    • /
    • 2023
  • This study undertook initial investigations into the carbonation of chlorine bypass dust, aiming to apply it as a raw material for cement and as an admixture for concrete. Various experimental methods, including XRD(X-ray diffraction), XRF(X-ray fluorescence), and particle size distribution analyses, were employed to verify the physical and chemical properties of chlorine bypass dust, with and without water washing. The mineral carbonation extent of chlorine bypass dust was examined by considering the dust type, stirring temperature, and experiment duration. Notably, a higher degree of mineral carbonation was observed in water-washed bypass dust than its non-water-washed counterpart, indicating an elevated calcium content in the former. Furthermore, an augmented stirring temperature positively impacted the initial stages of mineral carbonation. However, divergent outcomes were observed over time, contingent upon the specific characteristics of dust types under consideration.

Study on the Thermal Characteristic Comparison of Fire.Explosion Hazard of Fugitive Dust Generated in the Manufacturing Process (제조공정상 발생하는 비산분진의 화재·폭발 위험성에 대한 열적특성 비교에 관한 연구)

  • Sun, Ko Jae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • This study carried out an experiment in order to compare thermal characteristics after collecting dust generated in the process of disposing of waste tire, plywood flour in the process of manufacturing plywood, salicylic acid dust in the process of manufacturing functional soap, and dust in the process of manufacturing wheat powder, which has potential fire and explosion hazard. According to the results of experiment, the analysis showed that all samples subject to the experiment were in the condition where heat flux decreased and temperature decreased as the quantity of added talc was increased. This shows that decomposition rate decreased, and hazard decreased. However, in all of samples subject to the experiment, as heating rate increased, endothermic onset temperature moved to the low-temperature part, and the amount of absorbed heat was largely increased. This showed that the decomposition hazard of sample increased as heating rate increased, according to the analysis. Besides, TGA experiment results showed that thermal stability was secured because total weight loss decreased as the amount of talc was increased for all samples subject to the experiment regarding the ratio of weight loss. It is expected that the continuous research and supplementation of dust explosion mechanism in the future will contribute to the establishment of measures for the effective dust explosion prevention.

Case Study of the Heavy Asian Dust Observed in Late February 2015 (2015년 2월 관측된 고농도 황사 사례 연구)

  • Park, Mi Eun;Cho, Jeong Hoon;Kim, Sunyoung;Lee, Sang-Sam;Kim, Jeong Eun;Lee, Hee Choon;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • Asian dust is a seasonal meteorological phenomenon influencing most East Asia, irregularly occurring during spring. Unusual heavy Asian dust event in winter was observed in Seoul, Korea, with up to $1,044{\mu}g\;m^{-3}$ of hourly mean $PM_{10}$, in 22~23 February 2015. Causes of such infrequent event has been studied using both ground based and spaceborne observations, as well as numerical simulations including ECMWF ERA Interim reanalysis, NOAA HYSPLIT backward trajectory analysis, and ADAM2-Haze simulation. Analysis showed that southern Mongolia and northern China, one of the areas for dust origins, had been warm and dry condition, i.e. no snow depth, soil temperature of ${\sim}0^{\circ}C$, and cumulative rainfall of 1 mm in February, along with strong surface winds higher than critical wind speed of $6{\sim}7.5m\;s^{-1}$ during 20~21 February. While Jurihe, China, ($42^{\circ}23^{\prime}56^{{\prime}{\prime}}N$, $112^{\circ}53^{\prime}58^{{\prime}{\prime}}E$) experienced $9,308{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$ during the period, the Asian dust had affected the Korean Peninsula within 24 hours traveling through strong north-westerly wind at ~2 km altitude. KMA issued Asian dust alert from 1100 KST on 22nd to 2200 KST on 23rd since above $400{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$. It is also important to note that, previously to arrival of the Asian dust, the Korean Peninsula was affected by anthropogenic air pollutants ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) originated from the megacities and large industrial areas in northeast China. In addition, this study suggests using various data sets from modeling and observations as well as improving predictability of the ADAM2-Haze model itself, in order to more accurately predict the occurrence and impacts of the Asian dust over the Korean peninsula.

A Study on the Status of Fine Dust Generated from Construction Waste Intermediate Treatment Plants in Rural Area and Its Impact on Neighboring Areas (농촌지역 건설폐기물 중간처리 사업장에서 발생하는 미세먼지의 발생 현황 및 인근 지역에 미치는 영향 연구)

  • Jang, Kyong-Pil;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.25 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • In this study, the status and characteristics of fine dust and its impact on neighboring areas were investigated to proactively respond to the government's environmental regulations expected in the future and to minimize the damage by the fine dust generated at construction waste intermediate treatment plants. In addition, since there are no such plants that can affect the surroundings with no houses or other waste treatment sites nearby, an independently located construction waste intermediate treatment plant was selected to compare the characteristics of fine dust with that from the construction waste intermediate treatment sites located in the downtown area. The conclusions of the study are as follows. (1) The measurement results of PM10 at 4 points in the plant showed that the location where the crushing facility was operating had an elevated level of fine dust at 80㎍/m3 on average and a maximum of 124㎍/m3, and the level rose to 110㎍/m3 at points where vehicles frequent. (2) The PM2.5 measurement results inside the plant showed that the average concentration of the reference point was 16㎍/m3 and the maximum value was 20㎍/m3, which was distributed within the management standard. (3) It was found that the average concentration of PM10 in the nearby area ranged from 28 to 38㎍/m3, which was similar to or lower than 36㎍/m3 of the reference point. Therefore, the concentration of the fine dust generated in the plant had a negligible effect on the increase in concentration of fine dust in nearby areas. (4) The heavy metal contents were measured from the filter paper collected from the plant. The PM10 was found to be about 14 to 26ng/m3, and PM 2.5 was 25 to 28ng/m3, which was the average of domestic atmospheric concentrations. (5) The SEM-EDX analysis results showed that the PM10 contained Si and O around 40% similarly for both. The SiO2, a component of silica occupied the most and C was present as CaCO3, which was assumed to be a limestone component. The remaining components included NaO, Al2O3, and CaO as trace oxides. (6) The SEM-EDX analysis results showed that the PM 2.5 contained 5 to 7% of Cl, which is a chlorine ion, and a small amount of K was detected at 2.51% in the sample from the shutdown plant.

A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather Information (미세먼지와 기상정보 기반의 AHP 분석을 통하여 태양광 발전소 최적입지선정에 대한 사례연구)

  • Lee, Geon-ju;Lee, Gi-Hyun;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.157-167
    • /
    • 2017
  • Solar energy has been known as a successful alternative energy source, however it requires a large area to build power generation facilities compared to other energy sources such as nuclear power. Weather factors such as rainy weather or night time impact on solar power generation because of lack of insolation and sunshine. In addition, solar power generation is vulnerable to external elements such as changes in temperature and fine dust. There are four seasons in the Republic of Korea hereby variations of temperature, insolation and sunshine are broad. Currently factors that cause find dust are continuously flowing in to Korea from abroad. In order to build a solar power plant, a large area is required for a limited domestic land hereby selecting the optimal location for the plant that maximizes the efficiency of power generation is necessary. Therefore, this research analyze the optimal site for solar power generation plant by implementing analytic hierarchy process based on weather factors such as fine dust. In order to extract weather factors that impact on solar power generation, this work conducts a case study which includes a correlation analysis between weather information and power generation.

Numerical Analysis for the Development of a Blower to Extend the Life of the Impeller and Reduce Power Costs by Changing the Air Flow (공기흐름 변경으로 임펠러의 수명연장과 전력비 절감을 위한 송풍기 개발을 위한 수치해석)

  • Kim, Il-Gyoum;Park, Woo-Cheul;Sohn, Sang-Suk;Kim, Young-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.192-199
    • /
    • 2020
  • The blower erosion phenomenon was investigated to develop a long-life blower with a volume flow rate of 10,000 ㎥/min with the required total pressure efficiency of 83% or more. The blower performance and blower erosion were predicted through numerical analysis by computational fluid dynamics(CFD). The conditions used for numerical analysis were an air volume of 16,200 ㎥/min, a rotation speed of 893 rpm, and a temperature of 330℃. The specific gravity, particle size, and amount of the dust was 3.15, 90 ㎛~212 ㎛, and is 265 kg/min, respectively. To examine the effects of a dust deflector on erosion, erosion analysis was performed by comparing the models with and without a dust deflector. Numerical analysis showed that when the dust deflector is installed, the average tended to decrease by 167% in the impeller and 133% in the boss. CFD using the Finne's model for erosion revealed a parallel restitution coefficient of 1 and a perpendicular restitution coefficient of 0.1. The blower performance of case 5 was 691.7 mmAq, and the efficiency was 83.3% when the rotation speed and the air volume flow rate were 880 rpm and 16,200 ㎥/min, respectively.