DOI QR코드

DOI QR Code

Case Study of the Heavy Asian Dust Observed in Late February 2015

2015년 2월 관측된 고농도 황사 사례 연구

  • Park, Mi Eun (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Jeong Hoon (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Sunyoung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Sang-Sam (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Jeong Eun (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Hee Choon (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cha, Joo Wan (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Ryoo, Sang Boom (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
  • 박미은 (국립기상과학원 환경기상연구과) ;
  • 조정훈 (국립기상과학원 환경기상연구과) ;
  • 김선영 (국립기상과학원 환경기상연구과) ;
  • 이상삼 (국립기상과학원 환경기상연구과) ;
  • 김정은 (국립기상과학원 환경기상연구과) ;
  • 이희춘 (국립기상과학원 환경기상연구과) ;
  • 차주완 (국립기상과학원 환경기상연구과) ;
  • 류상범 (국립기상과학원 환경기상연구과)
  • Received : 2016.02.15
  • Accepted : 2016.05.06
  • Published : 2016.06.30

Abstract

Asian dust is a seasonal meteorological phenomenon influencing most East Asia, irregularly occurring during spring. Unusual heavy Asian dust event in winter was observed in Seoul, Korea, with up to $1,044{\mu}g\;m^{-3}$ of hourly mean $PM_{10}$, in 22~23 February 2015. Causes of such infrequent event has been studied using both ground based and spaceborne observations, as well as numerical simulations including ECMWF ERA Interim reanalysis, NOAA HYSPLIT backward trajectory analysis, and ADAM2-Haze simulation. Analysis showed that southern Mongolia and northern China, one of the areas for dust origins, had been warm and dry condition, i.e. no snow depth, soil temperature of ${\sim}0^{\circ}C$, and cumulative rainfall of 1 mm in February, along with strong surface winds higher than critical wind speed of $6{\sim}7.5m\;s^{-1}$ during 20~21 February. While Jurihe, China, ($42^{\circ}23^{\prime}56^{{\prime}{\prime}}N$, $112^{\circ}53^{\prime}58^{{\prime}{\prime}}E$) experienced $9,308{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$ during the period, the Asian dust had affected the Korean Peninsula within 24 hours traveling through strong north-westerly wind at ~2 km altitude. KMA issued Asian dust alert from 1100 KST on 22nd to 2200 KST on 23rd since above $400{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$. It is also important to note that, previously to arrival of the Asian dust, the Korean Peninsula was affected by anthropogenic air pollutants ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) originated from the megacities and large industrial areas in northeast China. In addition, this study suggests using various data sets from modeling and observations as well as improving predictability of the ADAM2-Haze model itself, in order to more accurately predict the occurrence and impacts of the Asian dust over the Korean peninsula.

Keywords

References

  1. Arimoto, R., X. Y. Zhang, B. J. Huebert, C. H. Kang, D. L. Savoie, J. M. Prospero, S. K. Sage, C. A. Schloesslin, H. M. Khaing, and S. N. Oh, 2004: Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. J. Geophys. Res., 109, doi:10.1029/2003JD004323.
  2. Arimoto, R., and Coauthors, 2006: Characterization of Asian dust during ACE-Asia. Global. Planet. Change, 52, 23-56. https://doi.org/10.1016/j.gloplacha.2006.02.013
  3. Byun, D. W., and J. K. S. Ching, 1999: Science algorithms of the EPA Models-3 Community Multi-scale Air Quality (CMAQ) Modeling system. EPA/600/R-99/030, 22 pp.
  4. Byun, D. W., and K. L. Schere, 2006: Review of the governing equations, computational algorithm, and other components of the Models-3 Community Multi-scale Air Quality (CMAQ) Modeling system. Appl. Mech. Rev., 59, 51-77. https://doi.org/10.1115/1.2128636
  5. Chen, Y.-S., P.-C. Sheen, E.-R. Chen, Y.-K. Liu, T.-N. Wu, and C.-Y. Yang, 2004: Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ. Res., 95, 151-155. https://doi.org/10.1016/j.envres.2003.08.008
  6. Cho, C., Y. Chun, B. Ku, S.-U. Park, S.-S. Lee, and Y.-A. Chung, 2007: Comparison of ADAM's (Asian Dust Aerosol Model) results with observed $PM_{10}$ data. Atmosphere, 17, 87-99 (in Korean with English abstract).
  7. Chun, Y., J. Kim, K.-O. Boo, and N.-O. Kim, 2000: The features associated with the Yellow sand phenomenon observed in Korea in wintertime. J. KOSAE, 16, 487-497 (in Korean with English abstract).
  8. Chun, Y., J. K.-O. Boo, J. Kim, S.-U. Park, and M. Lee, 2001: Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res., 106, 18461-18469. https://doi.org/10.1029/2001JD900184
  9. Chung, K.-Y., and S.-U. Park, 1995: Characteristic synoptic features associated with the transport of Yellow sand to Korea. Atmosphere, 31, 45-63 (in Korean with English abstract).
  10. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  11. Kim, H.-D., G.-S. Kang, D.-K. Lee, K.-W. Jin, S.-B. Seo, H.-J. Oh, J.-H. Ryu, H. Lamber, I. Laine, P. Meyer, P. Coste, and J.-L. Duquesne, 2012: COMS, the new eyes in the sky for geostationary remote sensing. Remote Sens.-Advan. Tech. P., 235-268.
  12. Kim, J., 2008: Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004). Atmos. Environ., 42, 4778-4789. https://doi.org/10.1016/j.atmosenv.2008.01.040
  13. Kim, M., J. Kim, M. S. Wong, J. Yoon, J. Lee, D. Wu, P. W. Chan, J. E. Nichol, C.-Y. Chung, and M.-L. Ou, 2014: Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ., 142, 176-187. https://doi.org/10.1016/j.rse.2013.12.003
  14. Kim, S.-M., H. M. Kim, S.-W. Joo, H.-C. Shin, and D. J. Won, 2011: Development of tools for calculating forecast sensitivities to the initial condition in the Korea Meteorological Administration (KMA) Unified Model (UM). Atmosphere, 21, 163-172 (in Korean with English abstract).
  15. Kim, S.-W., S.-C. Yoon, J. Kim, and S.-Y. Kim, 2007: Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ., 41, 1634-1651. https://doi.org/10.1016/j.atmosenv.2006.10.044
  16. Kwon, H.-J., S.-H. Cho, Y. Chun, F. Lagarde, and G. Pershagen, 2002: Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. Section A, 90, 1-5. https://doi.org/10.1006/enrs.2002.4377
  17. Lee, E.-H., S. Kim, J.-C. Ha, and Y. Chun, 2012: Performance analysis of simulation of Asian dust observed in 2010 by the all-season dust forecasting model, UM-ADAM2. Atmosphere, 22, 245-257 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.2.245
  18. Lee, J., J. Kim, C. H. Song, J.-H. Ryu, Y.-H. Ahn, and C. K. Song, 2010: Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sens. Environ., 114, 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  19. Lin, T.-H., 2001: Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation. Atmos. Environ., 35, 5873-5882. https://doi.org/10.1016/S1352-2310(01)00392-2
  20. Mori, I., M. Nishikawa, T. Tanimura, and H. Quan, 2003: Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmos. Environ., 37, 4253-4263. https://doi.org/10.1016/S1352-2310(03)00535-1
  21. Onishi, K., Y. Kurosaki, S. Otani, A. Yoshida, N. Sugimoto, and Y. Kurozawa, 2012: Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmos. Environ., 49, 94-102. https://doi.org/10.1016/j.atmosenv.2011.12.018
  22. Orsini, D. A., Y. Ma, A. Sullivan, B. Sierau, K. Baumann, and R. J. Weber, 2003: Refinements to the particleinto-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmos. Environ., 37, 1243-1259. https://doi.org/10.1016/S1352-2310(02)01015-4
  23. Park, J. S., J. S. Han, and J. Y. Ahn, 2013: The research trend of Asian Dust storm (AD) of Korea and recent episode analysis. J. KOSAE, 29, 553-573 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2013.29.5.553
  24. Park, M. E., C. H. Song, R. S. Park, J. Lee, J. Kim, S. Lee, J.-H. Woo, G. R. Carmichael, T. F. Eck, B. N. Holben, S.-S. Lee, C. K. Song, and Y. D. Hong, 2014: New approach to monitor transboundary particulate pollution over Northeast Asia. Atmos. Chem. Phys., 14, 659-674. https://doi.org/10.5194/acp-14-659-2014
  25. Park, S.-U., 2015: Spatial distributions of aerosol loadings and depositions in East Asia during the year 2010. Atmos. Environ., 107, 244-254. https://doi.org/10.1016/j.atmosenv.2015.02.046
  26. Park, S.-U., A. Choe, E.-H. Lee, M.-S. Park, and X. Song, 2010a: The Asian dust aerosol model 2 (ADAM2) with the use of normalized difference vegetation data (NDVI) obtained from the spot4/vegetation data. Theor. Appl. Climatol., 101, 191-208. https://doi.org/10.1007/s00704-009-0244-4
  27. Park, S.-U., M.-S. Park, and Y. Chun, 2010b: Asian dust events observed by a 20-m monitoring tower in Mongolia during 2009. Atmos. Environ., 44, 4964-4972. https://doi.org/10.1016/j.atmosenv.2010.08.014
  28. Park, S.-U., J. H. Cho, and M.-S. Park, 2012: A simulation of aerosols in Asia with the use of ADAM2 and CMAQ. Advances in Fluid Mechanics and Heat & Mass Transfer, P. Mastny et al. Eds., 258-263.
  29. Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci., 96, 3396-3403. https://doi.org/10.1073/pnas.96.7.3396
  30. Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 112, D14S07, doi:10.1029/2007JD009661.
  31. Seinfeld, J. H., and Coauthors, 2004: ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteor. Soc., 85, 367-380. https://doi.org/10.1175/BAMS-85-3-367
  32. Sun, D., F. Chen, J. Bloemendal, and R. Su, 2003: Seasonal variability of modern dust over the Loess Plateau of China. J. Geophys. Res., 108, doi:10.1029/2003JD003382.
  33. Sun, J., M. Zhang, and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate. J. Geophys. Res., 106, 10325-10333. https://doi.org/10.1029/2000JD900665
  34. Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys, Res. Lett., 34, L19803, doi:10.1029/2007gl030135.
  35. Yu, X., T. Cheng, J. Chen, and Y. Liu, 2006: A comparison of dust properties between China continent and Korea, Japan in East Asia. Atmos. Environ., 40, 5787-5797. https://doi.org/10.1016/j.atmosenv.2006.05.013
  36. Zhang, D. F., A. S. Zakey, X. J. Gao, F. Giorgi, and F. Solmon, 2009: Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos. Chem. Phys., 9, 1095-1110. https://doi.org/10.5194/acp-9-1095-2009

Cited by

  1. Aerosol Physical Characteristics over the Yellow Sea During the KORUS-AQ Field Campaign: Observations and Air Quality Model Simulations vol.55, pp.4, 2019, https://doi.org/10.1007/s13143-018-00100-x
  2. Case Studies of Mass Concentration Variation in the Central-Southern Korean Peninsula Caused by Synoptic Scale Transport of Dust Storms vol.40, pp.4, 2019, https://doi.org/10.5467/JKESS.2019.40.4.41