• Title/Summary/Keyword: Durable design

Search Result 169, Processing Time 0.026 seconds

Trend in New Distribution Class Arrester Ground Lead Disconnector Design (신뢰성이 향상된 배전급 피뢰기 설계 기술의 동향)

  • Lee, Ju-Hong;Yun, Ju-Ho;Kim, In-Hee;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.541-542
    • /
    • 2007
  • The paper also introduces a new Distribution Class ground lead disconnector design that not only extends the claimable detonation range well below the 20 amps specified in industry standards, but is very durable when exposed to severe arrester durability tests. Finally. this paper shows how this next generation disconnector interacts with the connected arrester to improve the overvoltage withstand capability of the arrester assembly. The interaction of the disconnector grading capacitor with the series-connected arrester metal oxide disc elements actually improves the arrester assembly temporary overvoltage withstand capability, making the design less vulnerable to TOV failures. Since the vast majority of distribution class arresters are sold domestically with ground lead disconnectors, this design improvement in the disconnector to improve detonation reliability also translates into a significantly improved distribution class arrester design.

  • PDF

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

Interaction assessment and optimal design of composite action of plastered typha strawbale

  • Olatokunbo, Ofuyatan;Adeola, Adedeji;Maxwell, Omeje;Simon, Olawale
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.221-231
    • /
    • 2017
  • The concept design of the typha strawbale masonry came up as a result of the urgent demand for a means of constructing sustainable buildings, both in rural and urban settlement, not only suitable for dwellers but for keeping farm products by structures that will respond to the environmental eco-system, coupled with the fact that such structures are also affordable, durable and easy to maintain during their service period. The effects of contact between plaster and the stacked strawbale of a masonry needs to be established and design optimization for durability and stability of the masonry be obtained. The assessment will involve the application of plaster materials (cement and natural earth) to the wall specimen panels. Past works have shown that plastered strawbale walls have adequate resistance against the appropriate vertical loads, and further showed that the earth plaster can bear higher stress than the cement plastered straw bale. There is the implication that the collapse or response of the earth-strawbale wall is significantly higher compared to that of cement-strawbale from other straw-based masonries. Therefore the allowable stresses of plastered typha strawbale shall be predicted for their optimum values using SAP2000. The stress stability of each masonry is obtained by analytical model using the best fit variables for the wall height and thickness.

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Study on Convergence Technique due to the Shape of Cruiser Board through Structural Analysis (구조 해석을 통한 크루저 보드의 형상에 따른 융합 기술연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.99-105
    • /
    • 2015
  • In order to prevent the environmental pollution nowadays, the mobile device for one person of cruiser board not used with the fossil oil has been noticed. This study aims to analyze the property of cruiser board due to the shape by carrying out the structural analysis for the safe design of cruiser board. Two models of the existing cruiser board and the cruiser board with new configuration are designed. As the structural analysis was carried out by using the finite element analysis program, the durability by deformation, stress and fatigue life was investigated. In the study result, the model of cruiser board with new configuration has the maximum deformation of 0.000971mm, the maximum stress of 0.936MPa and the fatigue life from 1827.7Cycle to $1.887{\times}105Cycle$. As all study result values at the new model became better than the existing model, the new model was seen to become more adequate at using than the existing model. This study result can be contributed to the safer and durable design of cruiser board. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

A Convergent Investigation on Thermal Stress Analysis due to Piston Head Shape (피스톤 헤드의 형상에 따른 열응력 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.163-167
    • /
    • 2020
  • In this study, thermal stress analysis by shape of piston head was conducted to investigate the shape of a durable piston. As the result, the farther the temperature is from the part where the temperature is applied, the lower the temperature can be seen. Depending on the shape of the piston head, the heated area became different. So, it could be seen that it affected the piston column part and the skirt part. This study showed that three models produced the least stress from the center of the piston head in the same way. Model A showed the smallest stress resulting in the yield compared to the other two models. Model B is a plate type piston head with a concave shape of the piston head, indicating that it is the model that has the least effect on the surrounding area at the center of the piston head. Model C showed the greatest stress resulting from the yield. The results of this study are also thought to be useful for designing the shape of durable pistons. By utilizing the thermal stress analysis due to piston head shape, this study is thought to conform with the aesthetic design.

Suggestion of the design guideline of the GFRP rebar (GFRP 보강근의 설계지침(안))

  • Sim, Jong-Sung;Park, Young-Hwan;Choi, Dong-Uk;Park, Seok-Kyun;Park, Cheol-Woo;Oh, Hong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.899-902
    • /
    • 2008
  • The GFRP rebar have been interested as the substituting material of the conventional steel rebar to the concrete structure for high durable concrete structure. The GFRP rebar, however, has different way to be fabricated and mechanical characteristics comparing with the conventional steel rebar. Therefore, to apply the GFRP rebar to the construction field, it needs the proper and reasonable design theory, codes and guidelines. In this study, for the design recommendation of the GFRP rebar, ACI440.IR and ISIS Canada design manual were investigated and concluded that the design theory of ISIS Canada design manual was relatively better design concept considering the limit state of the GFRP rebar in design and analysis. With this design concept, new design equation for the GFRP rebar was suggested and investigated with other design equations.

  • PDF

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Dual-curable Flame-Retardant Finish of Silk Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용성 Cyclcophosphazene 유도체를 이용한 견섬유의 이중경화형 방염가공)

  • Kim, Jeong-Hwan;Baek, Ji-Yun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.217-223
    • /
    • 2022
  • Flame-retardant finished silk fabrics could release carcinogenic formaldehyde resulting from the conventional finishing agents. New water-soluble cyclophosphazene derivative can be used as a formaldehyde-free flame retardant for the silk protein. Dichloro tetrakis{N-[3-dimethylamino)propyl]methacrylamido}cyclophosphazene(DCTDCP) can be cured by heat or UV irradiation as a durable flame retardant for the silk fabrics. Treatment conditions were optimized including curing temperature and time, finishing formulations, and UV energy. At the 30% DCTDCP application, peak HRR and THR decreased by 42.6% and 49.6% respectively compared to the pristine silk fabrics. Also char residue increased up to 48% from 11% indicating solid-phase retarding mechanism. The flame-retardant silk fabrics showed a LOI of 31.1 and the washed sample maintained a LOI of 26.8 even after ten laundering cycles.

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.