• Title/Summary/Keyword: Durability test cycle

Search Result 97, Processing Time 0.023 seconds

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

BSR Test method for Vehicle Seat using Excitation and Operation Durability Test (차량 시트 가진 및 작동 내구 BSR 시험법 연구)

  • Choi, Hoil;Kang, Jaeyoung;Park, Junghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2436-2441
    • /
    • 2015
  • BSR noise from automobiles is largely issued in recent as an emotional quality. This study describes the two test methods for determining BSR noise occurred in automotive seat system. First, the sine sweep test is found to be an effective excitation method for determining BSR noise with high frequency. Second, BSR operation test is introduced in such a way that BSR noise during operation of seat height system is measured by several accelerometer at each 800 cycles until 6400 cycles. The periodic noise signal is captured during one cycle after many cycles of operation. Two test method presented in this paper can be analyzed more efficiently BSR noise of the seat.

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis (수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가)

  • Jun Ho, Park;Kwang Seop, Im;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.496-513
    • /
    • 2022
  • In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

Phenol-Formaldehyde (PF) Resin Bonded Medium Density Fiberboard

  • Park, Byung-Dae;Riedl, Bernard;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • This study was conducted to manufacture MDF panels bonded with PF resins which provide excellent durability and dimensional stability with panels, and to identify benefits and weaknesses of using PF resins for MDF panels that have been manufactured with urea-formaldehyde (UF) resins for interior applications due to its low dimensional stability under moisture conditions. The results showed that the performance of PF-bonded MDF panels satisfied the performance requirement. A six-cycle aging test also revealed that PF-bonded MDF panels had high durability. Thickness swelling after 24 hours submersion in cold water was less than 2 percent, showing good dimentioanl stability. The identified weaknesses of using PF resins were relatively high resin content and long hot-pressing time. An acceptable resin content appeared to be 8 percent which can increase the production cost of PF-bonded MDF panels. The hot-pressing time (7 minutes) used in this study is relatively long compared to that of UF-bonded MDF panels. This result also indicates that hot-pressing process has to be optimized to control various pressing variables.

  • PDF

Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form

  • Noh, Hye Ran;Lee, Dong Woo;Suh, Kyungwon;Lee, Jeongmook;Kim, Tae-Hyeong;Bae, Sang-Eun;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.

Mechanical Properties And Chlorde Penetration Resistance of Shotcrete according to Mineral Admixture Types and Supplemental Ratio (광물성 혼화재료의 종류 및 혼입율에 따른 숏크리트의 역학적 특성 및 염해 저항성)

  • Han, Seung-Yeon;Yun, Kyong-Ku;Nam, Kyeong-Gung;Lee, Kyeo-Re;Eum, Young-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4960-4968
    • /
    • 2015
  • In this study to improve the chloride durability of the shotcrete structure depending on types and contents of mineral admixture chloride resistance was evaluated by NT BUILD 492 of european test standards. It was also evaluated with the mechanical properties such as static strength and chloride penetration resistance. For shotcrete mixed crushed stone aggregate of the maximum size 10mm of coarse aggregates was produced. Based on 28days compression strength the variable mixed with 15% silica fume showed the highest strength in 67.55MPa. As the content of fly ash and blast furnace slag increased, the strength lowered. In the chloride penetration resistance test, OPC showed "high grade" and In the case of admixture, the penetration resistance tended to increase in all variables except the fly ash. In order to evaluate the service life, the accelerated chloride penetration test was conducted by the standards of KCL, ACI, FIB. Test results were obtained with the lowest spreading factor in a variable mixed with silica fume of 15%. At the KCI standards, It was found to have a service life of about 65 years and at the FIB standards, It was found to have a service life of 131 years. Among standards, the service life of KCI standard in all of the variables was evaluated as the lowest.

Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

  • Kulunk, Safak;Kulunk, Tolga;Sarac, Duygu;Cengiz, Seda;Baba, Seniha
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS. Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with $Al_2O_3$; Co: airborne particle abrasion with silica-coated $Al_2O_3$; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (${\alpha}=.05$). RESULTS. Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION. Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.

Effects of Curing & Formation Conditions on the Capacity of Positive Plate for Automotive Vehicles VRLA Batteries (양극판의 숙성과 화성조건이 자동차용 VRLA 배터리 성능에 미치는 영향)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2016
  • We studied the effect of battery deep cycle according to the way of active materials formation and the creation condition of electrode material, 3BS ($3PbO{\cdot}PbSO_4{\cdot}H_2O$) and 4BS ($4PbO{\cdot}PbSO_4$), in order to develop the batteries for Idle Stop & Go system. During the curing with active materials of anode and cathode, we found that the final creased active material was deformed by temperature control and it effects the durability of batteries. AGM battery and Flooded battery with 3BS active materials have excellent initial performance. And AGM battery with 4BS active materials shows the lower performance relatively. To compare and analyze of the formation efficiency of active materials, we tested the formation chagging steps with 3 steps and 9 steps differently. The results are that AGM battery with 4BS active materials is better on initial performance than AGM battery with 3BS. After the comparison of durability by DOD 17.5% life test, AGM battery is more suitable than flooded battery for the ISG system which needs the frequent deep cycle. In conclusion, AGM battery is the most suitable for ISG system and the life performance shows 80% difference according to the way of formation and curing of AGM batteries.