• Title/Summary/Keyword: Durability for freezing & thawing

Search Result 204, Processing Time 0.029 seconds

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.

A Study on Durability Improvement of Concrete Using Glycol Ether Chemical Admixture (글리콜에테르계 혼화제가 콘크리트의 내구성 향상에 미치는 영향에 관한 연구)

  • Kim, Kwang-Ki;Song, In-Myung;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.117-124
    • /
    • 2007
  • Focused on the material-related aspect for enhancing the durability of concrete, the present study analyzed the effect of glycol ether admixture, which is a chemical admixture that can compact the structure of concrete by entraining air inside the concrete, on the basic physical properties and durability characteristic of the concrete. In analyzing the results of experiment, we examined the basic physical properties and durability characteristic of concrete according to addition rate based on OPC and selected the optimal addition rate. In addition, with the optimal addition rate, we added glycol ether admixture to concrete, which contained fly ash used as binder and high-performance water reducing agent for reducing the unit quantity, and examined changes in the characteristics of the concrete. According to the result, the optimal addition rate of glycol ether admixture was 3% of the unit quantity of cement, and the addition of binder and chemical admixture did not have a significant effect on unhardened concrete but reduced the air content. In addition, concrete showed resistance performance of around 30% to carbonation and around 40% to drying shrinkage. In addition, as for resistance to freezing and thawing, the relative dynamic modulus of elasticity was over around 85% through atmospheric curing. These performances prove the effect.

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

Evaluation of Bond Strength It Durability of Repairing Materials for Underwater Concrete Structures (수중 보수재료의 부착강도 및 내구성능 평가)

  • 손영현;임치중;김완상;김세준;서정우;박영석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.829-834
    • /
    • 2002
  • Recently, research and development for a number of repairing material like an epoxy-based material and polymer-cementitious material as well as anti-washout underwater concrete have been carried out. But, the study on tile materials for the concrete structure exposed to a wetted condition is at a standstill and there are not any suitable reference data at a repairing work for the concrete structure at a splash as well as a structure under severe moisture condition. In this study, the material, called as “ceramic metal”, with an excellent mobility and plasticity as well as with a high bond strength and durability of freezing-thawing resistant properties under any environmental conditions was developed. And, the experimental evaluations for the utility wert widely performed.

  • PDF

Mechanical Properties and Resistance to Freezing and Thawing of the Recycled Aggregate Concrete with Metakaolin (메타카올린을 혼합한 재생골재 콘크리트의 역학적 특성 및 동결융해 저항성)

  • Moon, Han-Young;Kim, Yang-Bae;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.270-278
    • /
    • 2005
  • Recycled aggregate concrete has lower strength and durability compared to concrete with natural aggregate. Therefore, metakaolin is used to improve the properties of recycled aggregate concrete. Main components of metakaolin are $SiO_2$ and $Al_2O_3$. and specific surface area is 9 times larger than that of ordinary portland cement. Quality of demolished-recycled aggregate(DRA) satisfies the type 1 of KS F 2573, but quality of source-recycled aggregate(SRA) does not satisfy with the type 2 of KS F 2573. When metakaolin was replaced with 20% of cement, compressive strength of concrete with SRA and DRA develops about 40~64% of control concrete. Water absorption ratio was reduced about 2% by replacing 20% metakaolin and it represents low compared to the natural aggregate concrete without metakaolin. In addition, the resistance to freezing and thawing, of concrete with DRA is indicated to remarkably enhanced due to the contribution of metakaolin. However, when metakaolin is replaced with 20% of cement, relative dynamic modulus of elasticity of concrete with SRA was below 60% at 210 freezing and thawing cycles.

A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar (폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구)

  • 김영집;김한엽;조영구;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

An Experimental Study on the Improvement of Durability for the Foundation Concrete under Cold Weather Condition (혹한지역 기초 콘크리트의 내구성 향상을 위한 실험 연구)

  • 우상균;송영철;김경민;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • The purpose of this study is to provide the optimum mix design of cold weather concrete to be placed at the foundation structures in substation. The basic performance tests including slump and slump flow, air content, compressive strength and freezing & thawing resistance were conducted for cold weather concrete by varying with W/C ratios such as 40%, 50% and 60% and air contents such as 3%, 4%, 5% and 6%. The effect on durability of concrete corresponding to the increasing amount of air content and W/C ratio was evaluated and the optimum mix design was recommended. From this study, the concrete mix design containing 6% of air content and 45% of W/C ratio is recommended for the foundation concrete of substation.

  • PDF