• Title/Summary/Keyword: Durability assessment

Search Result 216, Processing Time 0.023 seconds

Assessment of strength and durability of bagasse ash and Silica fume concrete

  • Singaram, Jayanthi;Kowsik, Radhika
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.801-814
    • /
    • 2016
  • An alternative type of building system with masonry units is extensively used nowadays to reduce the emission of CO2 and embodied energy. Long-term performance of such structures has become essential for sustaining the building technology. This study aims to assess the strength and durability properties of concrete prepared with unprocessed bagasse ash (BA) and silica fume (SF). A mix proportion of 1:3:3 was used to cast concrete cubes of size $100mm{\times}100mm{\times}100mm$ with various replacement levels of cement and tested. The cubes were cast with zero slump normally adopted in the manufacturing of hollow blocks. The cubes were exposed to acid attack, alkaline attack and sulphate attack to evaluate their durability. The mass loss and damages to concrete for all cases of exposures were determined at 30, 60, and 90 days, respectively. Then, the residual compressive strength for all cases was determined at the end of 90 days of durability test. The results showed that there was slight difference in mass loss before and after exposure to chemical attack in all the cases. Though the appearance was slightly different than the normal concrete the residual weight was not affected. The compressive strength of 10% bagasse ash (BA) as a replacement for cement, with 10% SF as admixture resulted in better strength than the normal concrete. Hence concrete with 10% replacement with BA along with 10% SF as admixture was considered to be durable. Besides solid concrete cubes, hollow blocks using the same concrete were casted and tested simultaneously to explore the possibility of production of masonry units.

Physical, Mechanical and Durability Properties of the Quartzite Units of Central Nepal Lesser Himalaya

  • Dinesh Raj Sharma;Naresh Kazi Tamrakar;Upendra Baral
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.67-105
    • /
    • 2024
  • This study compares the quartzites of four quartzite units: The Fagfog Quartzite, Dunga Quartzite (member of the Robang Formation), Pandrang Quartzite (member of the Kalitar Formation) and the Chisapani Quartzite. The analysis shows variations in flakiness and elongation, as the Fagfog Quartzite displays low flakiness whereas the Pandrang and the Chisapani have moderate and the Dunga Quartzite has shown variations. The density values of the four quartzite units remain consistent, indicating uniform physical properties and porosity levels. However, bulk density values differ among the quartzites, suggesting variations in particle arrangement, porosity, and density. Regarding strength measures, the Pandrang and the Chisapani Quartzite have higher strength characteristics as compared to the Fagfog and the Dunga Quartzites. The Pandrang Quartzite has the highest average point load strength index, classifying it as "Extremely Strong". The resistance to impact and crushing forces varies among the quartzites, with lower Aggregate Impact Value (AIV) and Aggregate Crushing Value (ACV) indicating higher strength and durability. Durability tests show that the Fagfog Quartzite has high durability against slaking, with a slight decrease observed after the fifth cycle. The Dunga Quartzite shows varying degrees of weathering, while the Pandrang and the Chisapani Quartzite have minimal weight changes, indicating strong resistance to weathering. Magnesium sulfate soundness tests indicate high durability and resistance to degradation for all four units. The Los Angeles abrasion value (LAAV) tests indicate favorable resistance to abrasion for the majority of the Fagfog, Dunga, and the Pandrang Quartzites samples, while Chisapani Quartzite shows more variability in LAAV values. The Pandrang Quartzite shows a higher proportion of elongated particles but lower flakiness index values as compared to Fagfog and Dunga Quartzites while Chisapani Quartzite stands out with a significantly higher presence of flaky particles and lower elongation index values. Mechanically, the Fagfog and Dunga Quartzite show higher strength and better resistance to abrasion and freeze and thaw. The Pandrang Quartzite shows moderate resistance to crushing and sudden effect, while the Chisapani Quartzite has variable resistance to effect. This comparative study emphasizes the diversity and complexity of quartzite rock types, showing the need for comprehensive characterization and assessment to determine their suitability for specific applications.

Accelerated life testing of concrete based on stochastic approach and assessment

  • Zhu, Binrong;Qiao, Hongxia;Feng, Qiong;Lu, Chenggong
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.111-120
    • /
    • 2017
  • This study aimed to design the accelerated life testing (ALT) of concrete, which stimulating the special natural environment maximumly. Its evaluation indexes, such as dynamic elastic modulus, mass and ultrasonic velocity were measured, and the variation of relative mass and relative dynamic elastic modulus of concrete were studied. Meanwhile, the microanalysis method was used. Moreover, an exploratory application of the stochastic approach, the Weibull distribution and the lognormal distribution, were made to assess the durability of concrete structures. The results show that the ALT for simulating natural environment is more close to the service process of concrete structure under actual conditions; The relative dynamic elastic modulus can be used as the dominant durability evaluation parameters, because it is more sensitive to the environmental factors compared with the relative quality evaluation parameters; In the course of the concrete deterioration, the destruction of the salt freezing cycle is the dominant factor, supplemented by other factors; Both of those two stochastic approaches can be used to evaluate the reliability of concrete specimens under the condition of ALT; By comparison, The lognormal distribution method is better to describe the reliability process.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

Assessment of concrete properties with iron slag as a fine aggregate replacement

  • Noufal, E. Rahmathulla;Kasthurba, A.K.;Sudhakumar, J.;Manju, Unnikrishnan
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.589-596
    • /
    • 2020
  • In an effort to find alternate, environment friendly and sustainable building materials, the scope of possible utilization of iron slag (I-sand), generated as a by-product in iron and steel industries, as fine aggregates in reinforced cement concrete (RCC) made with manufactured sand (M-sand) is examined in this manuscript. Systematic investigations of the physical, mechanical, microstructural and durability properties of I-sand in comparison with RCC made with M-sand have been carried out on various mix designs prepared by the partial/full replacement of I-sand in M-sand. The experimental results clearly indicate the possibility of utilizing iron slag for preparing RCC in constructions without compromising on the property of concrete, durability and performance. This provides an alternate possibility for the effective utilization of industrial waste, which is normally disposed by delivering to landfills, in building materials which can reduce the adverse environmental effects caused by indiscriminate sand mining being carried out to meet the growing demands from construction industry and also provide an economically viable alternative by reducing the cost of concrete production.

Reliability Assessment of Tubular Markers Used for Road Safety Facilities (도로안전시설용 시선유도봉의 신뢰성 평가)

  • Koo, Hyun-Jin;Yoon, Ye-Seok
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Tubular markers for road safety facilities are used to lead the driver's sight line and separate the lanes on the road. Such tubular markers are usually installed on the road and frequently hit by vehicles, they are accordingly requested to assure the product durability. The traditional evaluation method of tubular markers include only quality tests of the material properties. However, most of consuming agencies in charge of road management at fields have proposed problems on long-term performance of the products hit by vehicles under various weather conditions. Therefore, the objectives of this study are to develop the reliability test methods and equipments to simulate the product failures of tubular markers due to vehicle collision and wheel compression and the delamination and discoloration of reflection sheets attached on the surface of the products under high and low temperatures.

A Case Study of Reliability Assessment of CMC in Hydraulic Clutch System with Field Warranty Data (보증수리자료를 활용한 유압클러치시스템의 클러치마스터실린더 신뢰성 분석 사례연구)

  • Lee, Sang Cheon;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • This paper is a case study of reliability assessment with field warranty data of Clutch Master Cylinder (CMC) in hydraulic clutch system. We estimate lifetime distribution using field warranty data which contain much useful information for understanding reliability of the system in the real-world environments. However, the estimated parameters are far from existing reference values, which seems to be caused right censored field warranty data. To modify the parameters, we use the information of the durability test which is performed to verify that the lifetime of the item meets the required level. After that, we can observe that the modified parameters are closer to the existing reference values. This case study shows a possible idea to supplement lack of right censored field warranty data and its applicability.

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • Lee, Sang-Beom;Park, Tae-Won;Park, Jong-Sung;Lee, Sun-Byung;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF