• 제목/요약/키워드: Durability Estimation

검색결과 158건 처리시간 0.026초

폴리에스터 막재의 역학적 특성에 관한 기초시험 (Basic Test on the Mechanical Characteristics of Polyester Membrane)

  • 박강근;윤승현;이장복
    • 한국공간구조학회논문집
    • /
    • 제10권2호
    • /
    • pp.127-134
    • /
    • 2010
  • 막 구조는 자유로운 형태, 경량성, 내구성, 햇빛 투광성 및 균질성 때문에 전 세계적으로 현대 건축물에 다양하게 사용되어 왔다. 새로운 막 재료의 개발로 새로운 건축 구조설계에 대한 가능성을 열어가고 있다. 최근 주로 사용되는 막 구조의 지붕 재료에는 PVC, PVF, PVDF, PTFE 코팅 막재 및 ETFE 막재가 수로 사용되고 있다. 건축용 막은 내화성, 강도 부족, 인열강도, 내구성 및 탄성 등에 대한 몇가지 문제점들을 가지고 있다. 이러한 문제점들을 평가하기 위해서 본 연구에서는 PVDF 코팅 폴리에스터 막재에 대한 인장강도, 인열 강도 및 반복하중거동 시험을 실시하여 건축용 막재의 기초적인 역학적 특성을 분석하고자 한다. 막재의 탄성계수는 337.30~1257.63N/$mm^2$, 신율은 17.90~26.91%로 주어졌다.

  • PDF

인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가 (Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network)

  • 할리오나;허인욱;최승호;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.144-151
    • /
    • 2023
  • 이 연구에서는 동결융해 작용을 받는 다양한 콘크리트 배합에 대한 실험결과를 수집하여 데이터베이스를 구축하였다. 이를 바탕으로 동결융해 작용을 받는 콘크리트의 인공지능 기반 내구성능 평가모델을 개발하였으며, 회귀분석을 통해 상대동탄성계수 추정식을 도출하였다. 제안된 인공신경망 모델의 오류율과 결정계수는 각각 약 10.4%와 0.7이었으며, 회귀분석 추정식도 유사한 결과를 나타내었다. 따라서, 제안된 인공신경망 모델 및 회귀분석 추정식은 다양한 배합의 동결융해 작용을 받는 콘크리트에 대한 상대동탄성계수를 추정하는 데에 활용될 수 있을 것으로 판단된다.

동력전달용 치차설계 전문가 시스템 개발연구 II (Development of Expert System for Designing Power Transmission Gears (II))

  • 정태형;변준형;이동형
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.122-131
    • /
    • 1992
  • 본 연구에서는 동력전달용 치차설계 전문가 시스템을 구축하기 위한 일단의 연구로서 먼저 동력전달용 치차의 치차파손의 원인과 대책의 진단을 위한 전문가 시스 템을 개발하였으며, 본 논문에서는 치차의 강도를 기준으로 삼아 원통치차를 설계할 수 있는 강도 기준 치차설계 전문가 시스템을 개발한다. 즉, 전문가 시스템은 치차 설계에 필요한 지식을 체계적으로 지식 베이스에 구축하며, 이를 이용하여 새로운 설 계안을 도출해 낼수 있는 추론엔진을 구성하고, 설계광정중에 변화하는 설계의 중간결 과 등을 저장하기 위한 임시작업영역을 기본요소로 구축한다. 또한 과거의 설계예를 데이터 베이스로 구축하여 설계시에 참조 할 수 있도록 하며, 새로운 치차의 설계뿐아 니라 설계되어 있는 치차의 강도평가도 할 수 있도록 한다. 전문가 시스템에 사용자 인터페이스, 설명기능, 지식획득기능 등을 추가함으로써 치차분야에 초심자라 할지라 도 개발된 전문가 시스템과의 문답식 대화를 통하여 손쉽게 치차를 설계할 수 있도록 한다.전문가 시스템을 기술하는 프로그램 언어는 PROLOG를 사용하여 퍼스널컴퓨 상 에서 구동될 수 있도록 하며, 강도평가시 많은 수치계산이 필요한 부분은 FORTRAN언어 를 사용하여 기술한 후 PROLOG와 연결(interface)함으로써 전체 전문가 시스템을 구축 한다.

시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가 (An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain)

  • 이돈출;김상환
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.

정용접이음재의 피로수명 예측에 관한 확률적 검토(I) : Weibull 확률 분포함수 적용 (Statistical Investigation of Fatigue Life Prediction of the Spot Welded Lap Joint(I) : Application of Weibull Probability Distribution Function)

  • 손일선;백동호
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.214-221
    • /
    • 1999
  • Spot welding is very important and useful technology in fabriaction of the thin sheet structure such as the automobile, train and air craft, Because fatigue strength of the spot welding point is however considerably lower than base metal due to stress concentration at the nugget edge, reasonable fatigue strength evaluation of spot welded lap joint is very important to estimate the reliability and durability of th spot welded structure and to establish a criterion of ling life fatigue design. For reasonalbe fatigue strength evaluation, it is necessary to estimate the fatigue strength of spot welded lap joints, systematically. So far, many investigators have numerically and experimentally studied on the systematic fatigue strength estimation for various spot welded lap joints, and the methods suggested has been considerably accumulated. By the way, for applying them in practical fatigue design of the thin sheet structure fabricated by spot welding ,it is also necessary to verify their efficiency and reliability on the predicted results, Therefore, in this study, a statistical fatigue strength estimation method for spot welded lap joints was developed by using the Weibull probability distribution function. From the result, it was found that fatigue strength and fatigue life of the spot welded lap joints having various dimension were able to be statically predicted . And also, a reliable criterion for long life fatigue design of the spot welded lap joint could be established.

  • PDF

암반의 굴착난이도 평가를 위한 제안 (Estimation of Ripperbility in Rock Mass)

  • 황영철;유병옥;김태수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.159-166
    • /
    • 1999
  • One of the most general methods that can evaluate the rippability is the seismic exploration. However, most field engineers have hardly used the seismic exploration. Instead of using the seismic exploration, they have usually used rock hammer and naked eyes to confirm the degree of rippability for soil, ripping rock and blasting rock. Therefore, to excavate the ground rationally, it is required to establish a quantitative criterion that can be used for distinguishing rippability. In this study, we find out the characteristics of rock strength through laboratory and field tests. The weathering condition of rock exposed to air due to excavation of soil layer and the variation of rock strength caused by weathering were investigated. A relationship between rock strength values that are obtained from uniaxial compression test, slaking durability test, point load test, schmidt hammer test and absorption ratio test is analyzed. The relationship is expressed in a form of equation by which we can evaluate the rock strengths obtained from simple laboratory and field tests. To evaluate rippability in a reasonable manner, a quantitative approach is proposed and a check list of rippability is developed based on the proposed methodology. It is recommended to modify the proposed method for evaluation of rippability in the field.

  • PDF

14톤급 휠 굴삭기 차축용 습식 다판 디스크 브레이크의 마찰특성 평가 (Estimation of Friction Characteristics of Wet-type Multiple Disc Brakes for Axle of 14 Ton Class Wheel Excavator)

  • 조연상;박흥식;홍성진;최병운;배명호
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.312-317
    • /
    • 2007
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wet-type multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are advanced in durability and braking power, and can be designed compactly. Thus, we designed and made wet-type multiple disk brakes of axle for the 14ton class wheel excavator to be localization of these imported all. These disk brakes were made a comparative test with the existing disk brakes by the SAE No.2 dynamometer, and the friction characteristics as dynamic and static friction coefficient and wear depth of friction paper were measured.

Diffusion coefficient estimation of Si vapor infiltration into porous graphite

  • Park, Jang-Sick
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.190.1-190.1
    • /
    • 2015
  • Graphite has excellent mechanical and physical properties. It is known to advanced materials and is used to materials for molds, thermal treatment of furnace, sinter of diamond and cemented carbide tool etc. SiC materials are coated on the surface and holes of graphite to protect particles emitted from porous graphite with 5%~20% porosity and make graphite hard surface. SiC materials have high durability and thermal stability. Thermal CVD method is widely used to manufacture SiC thin films but high cost of machine investment and production are required. SiC thin films manufactured by Si reaction liquid and vapore with carbon are effective because of low cost of machine and production. SiC thin films made by vapor silicon infiltration into porous graphite can be obtained for shorter time than liquid silicon. Si materials are evaporated to the graphite surface in about $10^{-2}$ torr and high temperature. Si materials are melted in $1410^{\circ}C$. Si vapor is infiltrated into the surface hole of porous graphite and $Si_xC_y$ compound is made. $Si_x$ component is proportional to the Si vapor concentration. Si diffusion coefficient is estimated from quadratic equation obtained by Fick's second law. The steady stae is assumed. Si concentration variation for the depth from graphite surface is fitted to quadratic equation. Diffusion coefficient of Si vapor is estimated at about $10^{-8}cm^2s^{-1}$.

  • PDF

차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측 (Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis)

  • 김병삼;강기준;박경우;노광두
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구 (A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines)

  • 이돈출;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF