• Title/Summary/Keyword: Duplex control

Search Result 129, Processing Time 0.024 seconds

A Full Duplex MAC Protocol of Asymmetric Traffic Environment (비대칭 트래픽 환경에서의 전이중 MAC 프로토콜)

  • Ahn, Hyeongtae;Kim, Cheeha
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.381-386
    • /
    • 2016
  • Recently full-duplex communication in wireless networks is enabled by the advancement of self-interference cancellation technology. Full-duplex radio is a promising technology for next-generation wireless local area networks (WLAN) because it can simultaneously transmit and receive signals within the same frequency band. Since legacy medium access control (MAC) protocols are designed based on half-duplex communication, they are not suitable for full-duplex communication. In this paper, we discuss considerations of full-duplex communication and propose a novel full-duplex MAC protocol. We conducted a simulation to measure the throughput of our MAC protocol. Through the simulation results, we can verify that significant throughput gains of the proposed full-duplex MAC protocol, thus comparing the basic full-duplex MAC protocol.

Medium Access Control Protocols for Full-Duplex Communications in WLAN Systems: Approaches and Challenges (무선랜 시스템에서 전이중 통신을 위한 MAC 프로토콜 분석)

  • Kim, Wonjung;Song, Taewon;Kim, Taeyoon;Pack, Sangheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1276-1285
    • /
    • 2015
  • Full-duplex communications have emerged as a key technology for next-generation wireless local area networks (WLANs). Although the key enabling technology for full-duplex communications is the self-interference cancellation (SIC) technique in the physical layer, the employment of full-duplex communications has huge potentials to substantially increase the throughput at the medium access control (MAC) layer. At the same time, full-duplex communications pose non-trivial challenges to the MAC protocol design. In this article, we first identify salient problems in supporting full-duplex communications in WLAN MAC protocols. After that, we survey the state-of-the art to address those problems and analyze their pros and cons. Finally, we present open research challenges to improve the effectiveness of full-duplex communications in WLANs.

Development of Power Controller for Control Rod Drive Mechanism in Reactor (원자로 제어봉 구동장치 제어시스템용 전력제어기 개발)

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.575-579
    • /
    • 2003
  • In this paper, we describe a Duplex Power Controller for Control Rod Control System(CRCS). A Duplex Power Controller has the various functions for the reliable operations of Control Rod Drive Mechanism(CRDM). Also we have implemented the diverse functions by utilizing the developed Duplex Power Controller. Due to the developed Duplex Power Controller, we are assured that the commercial operation by this system be made before long.

  • PDF

Binary Power Control for Sum Rate Maximization of Full Duplex Transmission in Multicell Networks

  • Vo, Ta-Hoang;Hwang, Won-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.583-585
    • /
    • 2016
  • The recent advances in wireless networks area have led to new techniques, such as small cells or full-duplex (FD) transmission, have also been developed to further increase the network capacity. Particularly, full-duplex communication promises expected throughput gain by doubling the spectrum compared to half-duplex (HD) communication. Because this technique permits one set of frequencies to simultaneously transmit and receive signals. In this paper, we focus on the binary power control for the users and the base stations in full-duplex multiple cellulars wireless networks to obtain optimal sum-rate under the effect interference and noise. We investigate with a scenario in there one carrier is assigned to only one user in each cell and construct a model for this problem. In this work, we apply the binary power control by the its simplification in the implemented algorithm for both uplink and downlink simultaneously to maximize sum data rate of the system. At first, we realize the 2-cells case separately to check the optimal power allocation whether being binary. Then, we carry on with N-cells case in general through properties of binary power control.

  • PDF

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

Design and Implementation of a Duplex Digital Excitation Control System for Power Plants

  • Nam. Chae-Ho;Nam, Jung-Han;Choi, June-Hyug;Baeg, Seung-Yeob;Cho, Chang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.140.4-140
    • /
    • 2001
  • This paper presents the duplex controller operated as master slave for Self Excited Static Type excitation system and the results of operation for duplex digital excitation system. Software is made up duplex multi-tasking control algorithm which is based on VxWorks(real-time OS), preprocessing algorithm for input-output signal, BSP & Device Driver for interfacing hardware and software, and OIS(Operator Interface Station) program, HMI S/W. Master controller and slave controller intercommunicate dominant data to minimize bump when controller switchover from master to slave occurs. Communication between master controller and slave controller is duplicated and communication between OIS and controller is duplicated. Hardware is made up VMEBUS based controller which is designed with PPC & I/O board ...

  • PDF

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

A Simple and Reliable Molecular Detection Method for Tomato yellow leaf curl virus in Solanum lycopersicum without DNA Extraction

  • Yoon, Ju-Yeon;Kim, Su;Choi, Gug-Seoun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2015
  • In the present work, a pair of primers specific to Tomato yellow leaf curl virus (TYLCV) was designed to allow specific amplification of DNA fragments from any TYLCV isolates using an extensive alignment of the complete genome sequences of TYLCV isolates deposited in the GenBank database. A pair of primers which allows the specific amplification of tomato ${\beta}$-tubulin gene was also analyzed as an internal PCR control. A duplex PCR method with the developed primer sets showed that TYLCV could be directly detected from the leaf crude sap of infected tomato plants. In addition, our developed duplex PCR method could determine PCR errors for TYLCV diagnosis, suggesting that this duplex PCR method with the primer sets is a good tool for specific and sensitive TYLCV diagnosis. The developed duplex PCR method was further verified from tomato samples collected from some farms in Korea, suggesting that this developed PCR method is a simple and reliable tool for rapid and large-scale TYLCV detections in tomato plants.

Design and implementation of fault tolerant controller using duplex processors (이중 프로세서를 이용한 고장허용 제어기의 설계 및 실현)

  • 최성규;홍일선;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.239-243
    • /
    • 1993
  • In this paper, a fault-tolerant controller using duplex processors has been designed and implemented. The PI controller is adopted as the control algorithm and the fault-tolerant control system is implemented by two single chip processors(MCS-96). Performances of the control system designed here have been shown via a simulation with application to a pitch channel autopilot.

  • PDF

On the Design of Optimal Response Time in Computer Terminal Networks

  • An Young-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.185-194
    • /
    • 1976
  • A terminal response time analysis for a general class of terminals-to-computer subsystem is presented in this paper. On the point of the front view, it should be considered for R.O.K. Military Defense to set up the communication network in order to facilitate for the currency of the information and the data communication system. The model used to study is based on the advanced data communications system in which terminals are connected to Terminal Control Units(TCU) that are in turn connected to local Front-End Processor(FEP). The line control procedures used to interface a TCU and an FEP may be half-duplex Binary Synchronous Communication(BSC), half-duplex Synchronous Data Link Control(SDLC), or full-duplex SLDC. This paper will contribute to facilitate the initial phase of system design and configuration for the Military Defense Communication Network System in future.

  • PDF