• Title/Summary/Keyword: Due Process

Search Result 14,926, Processing Time 0.043 seconds

Effects of Die Deformation and Channel Angle on Deformation Behavior of Materials During Equal Channel Angular Pressing with Pure-Zr (순수 지르코늄의 ECAP공정에서 금형의 변형 및 채널각이 재료의 변형거동에 미치는 영향)

  • Gwon, Gi-Hwan;Chae, Su-Won;Gwon, Suk-In;Kim, Myeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1751-1758
    • /
    • 2001
  • Among severe plastic deformation processes, ECAP has drawn much attention due to its advantages including ultra-fine grain size material production. In this paper, ECAP process with pure -Zirconium is investigated due to its applicability to nuclear reactors. The finite element method is employed to investigate the deformation behavior of materials during ECAP process. In particular, effects of process parameters such as die deformation and channel angles on the material behaviors have been investigated. Experimental studies have also been performed to verify the numerical results.

The Effects on a Side-Cut Grinding depend on the Change of the Quill Rigidity (퀼축강성 변화가 측면 연삭가공에 미치는 영향)

  • Choi, Hwan;Kim, Chang-Su;Park, Won-Kyue;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.36-41
    • /
    • 2013
  • One of the problems in grinding process using a machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this study, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center. Grinding experiments are performed at various grinding conditions including quill length, quill diameter and depth of cut. The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity are investigated experimentally. The slenderness ratio of the quill is significant factor to analyse the change of the grinding force and machining error.

Improving Remodeling Process of Plant Dormitory Based on User Demand (사용자 요구기반 공장기숙사 리모델링 프로세스 개선)

  • Koo, Kyo-Jin;Park, Sang-Hun;Park, Hyung-Jin;Kim, Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.321-322
    • /
    • 2012
  • Since 1980, rapid social and economic development due to increased plant construction has led to a plant dormitory in a short period. In recent years, by the advent of the durability of dormitory remodeling is a critical need. However, user requirements due to the lack of owner's budget do not reflected. As a result, users have complained about the scope of construction, and construction stakeholder in accordance with the budget efficiency of the complaints have decreased. In this study the remodeling requirements in the planning stages is proposed for the remodeling process. In addition work type and element can select a range of construction worksheet are proposal.

  • PDF

Electrical Characteristics of Oxide Layer Due to High Temperature Diffusion Process (고온 확산공정에 따른 산화막의 전기적 특성)

  • 홍능표;홍진웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.451-457
    • /
    • 2003
  • The silicon wafer is stable status at room temperature, but it is weak at high temperatures which is necessary for it to be fabricated into a power semiconductor device. During thermal diffusion processing, a high temperature produces a variety thermal stress to the wafer, resulting in device failure mode which can cause unwanted oxide charge or some defect. This disrupts the silicon crystal structure and permanently degrades the electrical and physical characteristics of the wafer. In this paper, the electrical characteristics of a single oxide layer due to high temperature diffusion process, wafer resistivity and thickness of polyback was researched. The oxide quality was examined through capacitance-voltage characteristics, defect density and BMD(Bulk Micro Defect) density. It will describe the capacitance-voltage characteristics of the single oxide layer by semiconductor process and device simulation.

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Research of the Composite Spun Yarn Manufacturing Process using Silicon Carbide and Para Aramid Fiber (SiC/p-Aramid 복합방적사 제조기술 연구)

  • Kim, Booksung;Ryu, Huijun
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Due to the rigid nature of the silicon carbide fiber(SiC), fiber damage occurs from the friction during the carding process. This damage not only lowers the spun yarn yield, but also lowers the heat resistance of the spun yarn, so that ultra-high heat resistant yarn cannot be manufactured. Therefore, in the carding process where the most friction between fiber and machine(wire, etc.) occurs, some factors were modified and tested, and as a result of measuring the change in physical properties, fiber damage decreased due to the wire angle or wire density, resulting in improved yield. The test method used to measure the yield of SiC fiber was the carbonization method, and the content of SiC fibers was calculated using the remaining amount after carbonization. Carbonization test was performed at air condition, 700℃, and for 2 hours. Analysis by SEM-EDX showed that the carbide was consistent with the composition of the SiC fiber.

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

Development of Spur Gear Parts for Automotive Actuators using Precision Cold Forging Technology (정밀냉간단조 기술을 적용한 자동차 액추에이터용 스퍼기어 부품개발)

  • D. H. Park;S. C. Han
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.335-343
    • /
    • 2023
  • Spur Gear parts for automobile actuators using existing former forging technology were produced in a total of three processes on a former forging machine. However, in order to improve cost increase due to frequent mold breakage, Spur Gear parts were designed and manufactured in the cold forging process after forming the preform through former forging. In other words, in the existing former forging mold, product seating defects occurred due to horizontal movement, resulting in many product defects and mold damage, so there was an urgent need to improve mold life and product defects. In order to improve this, we tried to improve the mold life by improving the existing 3 former forging processes to a former forging process and 2 cold forging processes. Therefore, We developed Spur Gear parts for automobile actuators were developed by applying precision cold forging technology through a former forging process and 2 cold forging processes to improve mold life.

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading (공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가)

  • Roh, Jeong-U;Baek, Un-Gyeong;Roh, Jae-Seung;Nam, Gibeop
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.390-394
    • /
    • 2020
  • The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

Design of On-line Process Control with Variable Measurement Interval

  • Park, Changsoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.319-336
    • /
    • 2000
  • A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.

  • PDF