• 제목/요약/키워드: Ductility Factor

검색결과 270건 처리시간 0.024초

확률론적 지진위험도 분석을 위한 원전 격납건물의 비탄성에너지 흡수계수 평가 (Inelastic Energy Absorption Factor for the Seismic Probabilistic Risk Assessment of NPP Containment Structure)

  • 최인길;서정문
    • 한국지진공학회논문집
    • /
    • 제5권5호
    • /
    • pp.47-56
    • /
    • 2001
  • 원전 격납건물은 내진 안정성을 확보하기 위해 설계단계에서 여유나 보수성을 부여하게 된다. 원전 구조물의 내진성능 평가는 이러한 여유나 보수성을 배제한 실질적인 성능 및 응답을 기준으로 평가하게 된다. 본 연구에서는 내진성능 평가에 고려되는 구조물의 성능 및 응답관련 계수들 중 그 기여도가 비교적 큰 비탄성 에너지 흡수계수의 산정방법에 대한 비교를 수행하였다. 또한 각종 방법에 따라 산정된 비탄성 에너지 흡수계수에 따른 HCLPF(high confidence of low probability of failure)값의 변화를 분석하였다. 연구결과 원전 격납건물의 비탄성 에너지 흡수계수는 1.5~1.75로 나타났다. 구조물의 내진성능을 명확히 평가하기 위해서는 먼저 구조물의 비선형 거동 및 연성도를 정확히 평가하여야 함을 알 수 있다.

  • PDF

기존시설물 내진성능평가를 위한 평가항목 분류체계와 평가방법 (Seismic Performance Level Criteria and Evaluation Methods)

  • 김남희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.251-260
    • /
    • 2000
  • Seismic performance evaluation systems require rational classification of structure systems, proper evaluation criteria, and their scoring index for synthesis. Current seismic performance systems need expert judgments based on collection of available data, approximate analysis of important items, and various scoring system. This study presents a three-step seismic performance evaluation system for building structures in Korea. Each evaluation step determines the seismic performance and the method depends on the degree of refinement of analysis. The preliminary step evaluation involves the global attributes of structures such as vertical irregularity, asymmetric plan, redundancy, and age of structures. The second step requires an elastic analysis for estimation of forces acting on critical sections and checks the strength and ductility. The final step requires inelastic capacity of structures. Each stephas own evaluation scheme with proper weighing factor dependent on the importance and consequence. This study applies the fuzzy theory to a scoring method that synthesizes the individual quantity to a representative value.

  • PDF

비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동 (Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete)

  • 권병운;강현구
    • 한국지진공학회논문집
    • /
    • 제19권6호
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

고강도 원형나선철근기둥의 내진성능에 관한 연구 (A Study on Seismic Capacity of Circular Spiral Reinforced Concrete Bridge Piers used in High Strength Concrete)

  • 김광수;김민구;배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.547-552
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and capacity assessment of circular spiral reinforcement concrete bridge piers used in high strength concrete. The displacement ductility, response modification factor(R), effective stiffness and plastic hinge region etc. was used to assess the seismic behavior and capacity of circular spiral reinforcement concrete bridge piers. The experimental variables of bridge piers test consisted of amount and spacing, different axial load levels. From the quasi-static tests on 9 bridge piers and analysis, it is found that current seismic design code specification of transverse confinement steel requirements and details may be revised.

  • PDF

단부에 Interlocking Spiral을 가진 전단벽의 거동에 관한 연구 (Study for the Structural walls with Interlocking Spirals on the boundary)

  • 홍성걸;김록배;정하선;구광현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.865-870
    • /
    • 2001
  • This paper propose a new seismic detail for ductility enhancement by interlocking spiral reinforcement in the potential yield regions of a wall. Through the theoretical consideration and experiment program, confinement with interlocking spirals lead the structural walls to ductile behavior. All specimens show stable hysteretic behavior and good energy dissipation capacity. Also the increase of shear strength mainly induces a flexural failure mode. As interlocking spiral are used in lapped splice region, they increase the bond strength and prevent a early tensile failure caused by the loss of bond stresses. Consequently, the confinement with interlocking spirals may result in a lower value of force reductions factor, newly proposed detail will be provide more economical design.

  • PDF

반복하중을 받는 철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 구조성능 평가 및 개선 (Improvement and Evaluation of Structural performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame under Load Reversals)

  • 신종학;하기주;김광연;이희종;남왕교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.541-546
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation of and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-l~3), cumulated energy dissipation capacities wear increased by 1.35~l.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

산업부산물을 활용한 고강도경량 콘크리트보의 거동 특성 (A Study on the Behavior Properties of the High-Strength Lightweight Concrete Beam Using the Industrial By-Products)

  • 이승조;박정민;손영호;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.188-191
    • /
    • 2004
  • We experimented variables of four kinds(a/d=1.5, 2.5, 3.5, 4.5) of shear span ratio to consider a structural characteristic of high-strength lightweight concrete beam used industrial by-product. Through the research of serials, the more increase of shear span ratio, the more ductility is superior. Rating the capacity of high-strength concrete beam and the capacity of lightweight concrete beam, in existing lightweight concrete beam evaluation formula, if a shear strength formula for normal concrete multiplies 0.85(reduction factor), it is rated as safety side over shear span ratio 2.5, but it is riskful at low shear span ratio. Therefore it is important that these factors are considered as the evaluation.

  • PDF

Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers

  • Park, Jai-Woo;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.131-150
    • /
    • 2013
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section (SHS) strengthened with carbon fiber reinforced polymers (CFRP) sheets. 9 specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the CFRP sheet orientation. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 100 transversely. Also, stiffness and ductility index (DI) were compared between un-retrofitted specimens and retrofitted specimens. Finally, it was shown that the application of CFRP to slender sections delays local buckling and subsequently results in significant increases in elastic buckling stress. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

Tri-Surface 콘크리트 모델을 이용한 수동 구속된 콘크리트의 비선형 해석 (Non-linear Analysis of Passive Confined Concrete Structures using Tri-Survace Concrete Model)

  • 조병완;김장호;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.604-607
    • /
    • 2003
  • Recently, hybrid concrete structures such as a concrete-filled steel tubular(CFT), a steel reinforced concrete(SRC) and a composite material are popular in structure applications. They also have merit of high strength, high ductility, and large energy absorption capacity. But the analysis of hybrid concrete structures is very difficult owing to the complex behavior of concrete under passive confinement. This paper has analyzed CFT, which receives passive confinement using Tri-Surface concrete model for three dimension finite element analysis. By the result of that, the proposed model was properly forecasted a concrete behavior that receives passive restraint as well as non-linear analysis of concrete which receive uniaxial stress and high active confinement of 400Mpa. If the model through the steady study is set up especially on the factor of concrete under passive confinement, the proposed concrete model will be surely useful for analysis of the hybrid concrete structures.

  • PDF

국내외 철근규격 연신율의 엄격성 평가 (Evaluation about The Rigor of Elongation for Domestic and Foreign Standard of Steel Reinforcement)

  • 김동현;이재훈;고성현;황도규;유현재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.279-280
    • /
    • 2010
  • 철근콘크리트구조의 연성에 영향을 미치는 중요한 요소인 철근의 최소연신율 규정은 각 나라 규격마다 상이하다. 이는 각 규격마다 철근의 연신율을 산출하는 기준인 표점거리가 다르기 때문이다. 이에 본 연구에서는 각기 다른 표점거리를 가지고 있는 국내외 규격을 비교하고, 단조증가 인장시험을 통하여 어떠한 규격의 연신율 규정이 더 엄격한지에 대해 실험적으로 분석 평가하였다.

  • PDF