• 제목/요약/키워드: Ductile Fracture

검색결과 530건 처리시간 0.045초

신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측 (The Prediction of Geometrical Configuration and Ductile Fracture Using the Artificial Neural network for a Cold Forged Product)

  • Kim, D.J.;Ko, D.C.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.105-111
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and geomeytical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cookcroft-Lathjam criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The predictions of neural network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF

유한요소해석을 이용한 금속 판재용 전단 파단 시편 설계 (Design of Shear Fracture Specimens for Sheet Metals Using Finite Element Analyses)

  • 김찬양;봉혁종;이명규
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.92-99
    • /
    • 2023
  • In this study, shear fracture specimens are designed using finite element analyses for the characterization of ductile fracture criteria of metal sheets. Many recently suggested ductile fracture criteria require experimental fracture data at the shear stress states in the model parameter identification. However, it is challenging to maintain shear stress states in tension-based specimens from the initial yield to the final fracture, and the loading path can be different for the different materials even with the same shear specimen geometries. To account for this issue, two different shear fracture specimens for low ductility/high ductility metal sheets are designed using the sensitivity tests conducted by finite element simulations. Priorly mechanical properties including the Hosford-Coulomb fracture criterion of the aluminum alloy 7075-T6 and DP590 steel sheets are used in the simulations. The results show that shear stress states are well-maintained until the fracture at the fracture initiation points by optimizing the notch geometries of the shear fracture specimens.

손상역학에 근거한 원자력 재료의 평면크기 영향 분석 (Assessment of In-plane Size Effect of Nuclear Materials Based on Damage Mechanics)

  • 장윤석;이태린;최재붕;석창성;김영진
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.393-401
    • /
    • 2006
  • The influences of stress triaxiality on ductile fracture have been investigated for various specimens and structures. With respect to a transferability issue, recently, the interests on local approaches reflecting micromechanical specifics are increased again due to rapid progress of computational environments. In this paper, the applicability of the local approaches has been examined through a series of finite element analyses incorporating modified GTN and Rousselier models as well as fracture toughness tests. The ductile crack growth of nuclear carbon steels is assessed to verify the transferability among compact tension (CT) specimens with different in-plane size. At first, the basic material constants were calibrated for standard CT specimens and used to predict fracture resistance (J-R) curves of larger CT specimens. Then, the in-plane size effects were examined by comparing the numerically estimated J-R curves with the experimentally determined ones. The assessment results showed that the in-plane size effect should be considered for realistic engineering application and the damage models might be used as useful tool for ductile fracture evaluation.

직사각형 전지 케이스의 V-notch부 터짐 예측에 관한 연구 (Study on Bursting Prediction of Rectangular Battery Case with V-Notch)

  • 김상목;송우진;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.59-66
    • /
    • 2009
  • In this study, V-notch part has been considered as one of safety components in rectangular cup used for mobile device. This kind of safety component in rectangular cup with the V-notch part, which controls adequately the increased internal pressure in the rectangular cup, plays an important role to prevent the explosion from the excessive internal pressure. The protecting mechanism on the mobile device against the explosion is that a series of fracture on the V-notch part at the critical internal pressure level occurs. Therefore, it is very crucial to estimate accurately the working pressure range of the safety device. Relationship between the working internal pressure and fracture phenomenon at V-Notch part was investigated through numerical analysis using ductile fracture criteria. Integral value, I, of the used ductile fracture criteria was calculated from effective stress and strain, and then the bursting pressure of the V-notch part was extracted. Comparisons between the estimated and experimental results show that this systematic approach to predict bursting pressure using the ductile fracture criteria gives fairly good agreements.

유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건 (Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System)

  • 안규백;방한서;풍전정남
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

비상체의 충돌에 의한 고인성 섬유보강 시멘트복합체의 파괴특성 (Fracture Characteristics of Ductile Fiber Reinforced Cement based Composites by Collision of Steel Projectile)

  • 남정수;김규용;김홍섭;김정현;한상휴
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.92-100
    • /
    • 2015
  • 본 연구는 폴리비닐 알코올 섬유 및 강섬유를 체적비율로 1.5% 혼입한 고인성 섬유보강 시멘트복합체에 대한 비상체의 고속충돌시험을 실시하고, 충돌조건에 따른 파괴특성을 실험적으로 검토하는 것을 목적으로 하였다. 비상체의 충돌에 의한 고인성 섬유보강 시멘트복합체의 파괴특성을 평가하기 위하여 화약압력식 충격시험장치를 활용하였으며, 충돌속도의 범위는 약 150~1,000m/s로 설정하였다. 파괴특성에 대한 평가결과, 고인성 섬유보강 시멘트복합체는 섬유를 혼입하지 않은 Plain시험체의 약 3배 이상의 비상체 운동에너지가 작용하는 범위에서도 표면관입의 파괴등급으로 평가되었으며, 시험체가 파단되지 않는 내충격성능이 확인 되었다. 또한, 충돌시험 전후에 대한 시험체의 질량감소율의 경우, Plain시험체는 비상체의 운동에너지의 증가율과 비례적인 관계를 보였지만, 고인성 섬유보강 시멘트복합체는 비상체의 운동에너지의 영향을 크게 받지 않는 것으로 나타났다. 특히, 이와 같은 경향은 시험체 배면의 파괴특성과 밀접한 관계를 가지며, S시험체에 비해 PVA시험체의 배면박리 억제효율이 큰 것으로 평가되었다. 한편, 국부손상에 대한 표면관입깊이 및 배면박리깊이의 관계를 검토한 결과, 고인성 섬유보강 시멘트복합체는 Plain과 달리 시험체 단면의 중앙선을 기준으로 배면에 가까운 영역에서 배면박리가 발생하는 것을 알 수 있었다. 본 연구를 통해 비상체의 충돌에 대한 고인성 섬유보강 시멘트복합체의 주요 파괴거동이 검토되었으며, Plain과 비교하여 내충격성능의 향상을 명확히 확인하였다.

API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발 (Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel)

  • 오창균;김윤재;박진무;백종현;김우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

머신러닝을 이용한 충격파면 해석에 관한 연구 (A Machine Learning Program for Impact Fracture Analysis)

  • 이승진;김기만;최성대
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.95-102
    • /
    • 2021
  • Analysis of the fracture surface is one of the most important methods for determining the cause of equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the fracture surface: ductile and brittle fractures. In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.

소성가공을 위한 연성파괴조건의 재고찰 (A review of ductile fracture criteria for forming processes)

  • 박종진;이영석
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1021-1029
    • /
    • 1997
  • In metalforming, ductile fracture criteria have been used for the purpose of predicting fracture occurrence in the stage of process design prior to manufacturing. In the present investigation, some of popular criteria are reviewed to find the most suitable one among them. As a result, it is found that the modified Cockroft and Latham criterion is better than others. The reasons are: it agrees with Roy's and McClintock's void growth models, it is more general than Oyane's and Kuhn's criteria, and it predicts fractures in compression as well as in tension well. However, it is also found that the criterion is incapable of predicting fractures in torsion.

취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성 (Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites)

  • 신익재;이동주
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.