• Title/Summary/Keyword: Ductile Fracture

Search Result 531, Processing Time 0.024 seconds

Effect of Ni on the Mechanical Properties and Fracture Characteristics of Austempered Ductile Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 Ni의 영향에 관한 연구)

  • Baek, Sang-Ho;Kim, Hong-Beom;Kim, Chang-Kuy;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.52-61
    • /
    • 1994
  • The effect of Ni addition, on the mechanical properties and fracture characteristics of Mo-Cu and Mo-Ni-Cu alloyed ductile iron austenitized at $900^{\circ}C$ and austempering temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$. The tensile strength, yield strength and hardness are decreased and elongation and impact value are increased in both Mo-Cu and Mo-Ni-Cu alloyed austempered ductile iron, with increased austempering temperature. According to the austempering temperature are increased, the amount of retained austenite are increased. Maximum value of fracture toughness is obtained at $350^{\circ}C$ austempering temperature at this condition, the amount of retained austenite came to 40% in Mo-Ni-Cu alloyed ADI and 34% in Mo-Cu alloyed ADI. The fracture surface of ADI which had represented high toughness are showed a quasi-cleavage pattern and a dimple pattern with micro void. Comparing the fracture characteristics of Mo-Cu alloyed ADI with that of Mo-Ni-Cu alloyed ADI, the latter was superior to the former.

  • PDF

Structural Integrity Assessments of Pressurized Pipes with Gouge using Stress-Modified Fracture Strain Criterion (삼축응력 기반의 파괴변형률 기준을 적용한 가우지 손상배관의 건전성 평가)

  • Oh C.K.;Kim Y.J.;Park J.M.;Baek J.H.;Kim Y.P.;Kim W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.808-813
    • /
    • 2005
  • Structural integrity assessment of defected pipe is important in fitness for service evaluation and proper engineering assessment is needed to determine whether pipelines are still fit for service. This paper present a failure prediction of gas pipes made of APIl X65 steel with gouge using stress-modified true fracture strain, which is regarded as a criterion of ductile fracture. For this purpose, API X65 pipes with gouge are simulated using elastic-plastic FE analyses with the proposed ductile failure criterion and the resulting burst pressures are compared with experimental data. Agreements are quite good, which gives confidence in the use of the proposed criteria to defect assessment fer gas pipelines. Then, further extensive finite element analyses are performed to obtain the burst pressure solution of pipes with gouge as a function of defect depth, length and pipeline geometry.

  • PDF

Fracture Behavior of a Ductile Layer Sandwiched by Stiff Substrates;Finite Element Analysis (강성모재에 끼워진 얇은 연성층의 파괴거동;유한요소해석)

  • Kim, Dong-Hak;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2078-2086
    • /
    • 1999
  • Fracture behaviors of an interface crack in a ductile layer sandwiched by rigid substrates are analyzed by finite element method. Several fracture mechanisms and the corresponding criteria are examined. And the crack growth behavior and fracture toughness are predicted. As the results, various crack growth procedures such as the crack jump to the other interface on the opposite side, the creation of a new crack far from the initial crack front, and the asymmetric relation of fracture toughness vs. mode mixity ($J_c$-$\Phi$) can be successfully explained.

Development of Austempered Ductile Iron With High Strength and High Toughness for Automotive Parts (고강도 ADI 의 자동차 부품개발에 관한 연구)

  • Kim, Won-Yong;Lee, Young-Sang;Kim, Gwang-Bae;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.408-416
    • /
    • 1990
  • The application of this new design approach called fracture mechanics allow one to determine the maximum allowable stress from the knowledge of the largest expected flow size and the plane strain fracture toughness of a material. In this study we examined the relation between retained austenite, mechanical property and fracture toughness accompanied by austempering heat treatment. Fracture toughness values and retained austenite volume were higher with the ADI(austempered ductile iron) which were austempered at $380^{\circ}C$ than austempered at $320^{\circ}C$. Additionally, fracture toughness values were increased for 1~2 hour austempering time but it was slowly decreased for 5 hour ADI maintaining the predominant fracture toughness($K_{IC}:83MPa{\sqrt{m}}$) is obtained following condition, namely, austempering temperature and time ($380^{\circ}C$ and 1 hour).

  • PDF

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint

  • Li, Xiangqing;Ding, Zhenyu;Liu, Chang;Bao, Shiyi;Qian, Hao;Xie, Yongcheng;Gao, Zengliang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1732-1741
    • /
    • 2020
  • The structural integrity of welded joints in the reactor pressure vessel (RPV) is directly related to the safety of nuclear power plants. The RPV is made from SA508-III steel in a pressurized water reactor. In this study, we investigated the effects of temperature on the tensile and fracture toughness properties of Chinese SA508-III welded joint in different sampling areas in order to provide reference data for structural integrity assessments of RPVs. The specimens used in tensile and fracture toughness tests were fabricated from the base metal (BM), weld metal (WM), and the heat-affected zone (HAZ) in the welded joint. The representative testing temperatures included the ambient temperature (20 ℃), upper shelf temperature (100 ℃), and service temperature (320 ℃). The results showed that temperature greatly affected the fracture toughness (JIC) values for the SA508-III welded joint. The JIC values for BM and HAZ both decreased remarkably from 20 ℃ to 320 ℃. The fracture morphologies showed that the BM and HAZ in the welded joint exhibited fully ductile fracture at 20 ℃, whereas partial cleavage fracture was mixed in ductile fracture mode at 100 ℃ and 320 ℃. The WM exhibited the ductile and cleavage fracture mixed mode at various temperatures, and the JIC values showed slight changes.

Experimental study on ductile crack initiation in compact section steel columns

  • Luo, Xiaoqun;Ge, Hanbin;Ohashi, Masatoshi
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.383-396
    • /
    • 2012
  • In order to develop a verification method for extremely low cycle fatigue (ELCF) of steel structures, the initiation mechanism of ductile cracks is investigated in the present study, which is the first step of brittle fracture, occurred in steel bridge piers with thick-walled sections. For this purpose, a total of six steel columns with small width-thickness ratios were tested under cyclic loading. It is found that ductile cracks occurred at the column base in all the specimens regardless of cyclic loading histories subjected. Moreover, strain history near the crack initiation location is illustrated and an index of energy dissipation amount is proposed to evaluate deformation capacity of structures.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon (질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동)

  • Lee, S.Y.;Kim, B.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

The Influence of [Mn/S] Ratios on the Fracture Morphology of a Heavy-section Steel Castings at Elevated Temperature (대형주강의 고온파단형태에 미치는 [Mn/S]비의 영향)

  • Kim, Sung-Gyoo;Kim, Ji-Tae;Park, Bong-Gyu;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.170-178
    • /
    • 2014
  • Using the Gleeble test, the effects of [Mn/S] ratios and the presence of sulfides on the high-temperature fracture morphology of heavy-section steel castings were analysed via the observations of the microstructures. The specimens for which the [Mn/S] ratio was in the range of 60~80 showed a ductile fracture morphology with an area reduction of more than 60%, while some specimens with similar [Mn/S] ratios showed a brittle fracture morphology with an area reduction of 0.0% due to the liquidation of sulfides at the grain boundary. The fracture morphology was classified into three types in the Gleeble high-temperature tensile test specimens. The first type showed dimple formation at the grain boundary, the formation of globular MnS sulfides, and plastic deformation of sulfides at an elevated temperature, indicating a needle-point type of ductile fracture with area reductions of 96.0~97.8%. The second type was a knife-edge type brittle fracture with an area reduction of 0.0% due to the film-type liquidation of sulfides at the grain boundary, band-type liquidation, and the liquidation of a terraced nipple pattern. The third type was the typical ductile fracture with an area reduction of 31.3~81.0%, in accordance with the mixture of dimples with in the grains and terraced nipple pattern at the grain boundary.