• Title/Summary/Keyword: Dual-phase Steel

Search Result 126, Processing Time 0.026 seconds

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

A Comparative Study of Computer Simulation using High-Speed Tensile Test Results with Actual Crash Test Results of DP Steels (복합조직강의 고속인장 결과를 이용한 컴퓨터 전산모사와 실제 충돌시험 결과와의 비교 연구)

  • Bang, Hyung Jin;Choi, Il Dong;Kang, Seong Geu;Moon, Man Been
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.873-882
    • /
    • 2012
  • Dual Phase (DP) steel which has a soft ferrite phase and a hard martensite phase reveals both high strength and high ductility and has received increased attention for use in automotive applications. To conduct structural analysis to verify vehicle safety, highly credible experimental results are required. In this study, tensile tests were performed in a strain rate range from $10^{-4}/s$ to 300/s for Sink Roll-Less (SRL) hot-dip metal coated sheets. Collision properties were estimated through simulation by LS-DYNA using the stress-strain curve obtained from the tensile test. The simulation results were compared with the actual crash test results to confirm the credibility of the simulation. In addition, a tensile test and a crash test with 2% prestrain and a baking (PB) specimen were evaluated identically because automotive steel is used after forming and painting. The mechanical behaviors were improved with an increasing strain rate regardless of the PB treatment. Thus, plastic deformation with an appropriate strain rate is expected to result in better formability and crash characteristics than plastic deformation with a static strain rate. The ultimate tensile strength (UTS) and absorbed energy up to 10% strain were improved even though the total elongation decreased after PB treatment, The results of the experimental crash test and computer simulation were slightly different but generally, a similar propensity was seen.

Defect Detection of Wall Thinned Straight Pipe using Shearography and Lock-in Infrared Thermography (전단간섭계와 적외선열화상을 이용한 감육 직관의 결함검출)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Ha-Sig;La, Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.55-61
    • /
    • 2009
  • The wall thinning defect of nuclear power pipe is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid. This type of defect becomes the cause of damage or destruction of in carbon steel pipes. Therefore, it is very important to measure defect which is existed not only on the welding part but also on the whole field of pipe. This study use dual-beam Shearography, which can measure the out-of-plane deformation and the in-plane deformation by using another illuminated laser beam and simple image processing technique. And this study proposes Infrared thermography, which is a two-dimensional non-contact nondestructive evaluation that can detect internal defects from the thermal distribution by the inspection of infrared light radiated from the object surface. In this paper, defect of nuclear power pipe were, measured using dual-beam shearography and infrared thermography, quantitatively evaluated by the analysis of phase map and thermal image pattern.

A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel (국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구)

  • Lee, Jae Ho;Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.

Simulation of Texture Evolution and Anisotropic Properties in DP Steels during Deep Drawing Process (디프도로잉 시 DP강의 집합조직 및 이방성 거동 모사)

  • Song, Y.S.;Kim, B.J.;Han, S.H.;Chin, K.G.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.517-522
    • /
    • 2008
  • A visco-plastic self-consistent (VPSC) polycrystal model has been applied to simulate texture simulation and anisotropic properties of DP steels during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. The final stable orientations were strongly dependent on the initial location in the blank. The evolution of anisotropy of DP steel sheets has been demonstrated through comparison of plastic strain rate vector at the different plastic strain levels.

Development of Austomtive Cold-roiled High Strength Steel Sheets (자동차용 고강도 냉연강판 개발)

  • 김성주;진광근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.349-356
    • /
    • 2004
  • 자동차의 외관품질과 관련된 외판재용 고강도강으로는 내 dent성을 향상을 위해서 IF-HSS강과 BH강의 사용량이 크게 증가하였으며, 최근에는 490MPa급 DP강이 적용되기 시작하고 있다. 그리고 내판 판넬의 경우에는 고가공성 을 갖는 고강도강의 개발으로 고강도강의 사용량이 늘어나고 있다. 내판재 중 승객의 안전과 관련된 멤버, 필라와 같은 구조부재는 중간 정도의 강도를 갖는 고강도강을 주로 적용되어 왔으나, 최근 차체경량화 요구의 증가로 590MPa급 이상 고강도강이 적용되기 시작하였으며, 특히 고속변형에서 에너지 흡수능이 우수한 TRIP (Trans-formation Induced Plasticity)강 및 DP(Dual Phase)강에 대한 관심이 크게 증대되고 있다. 저속충돌에서 차체를 보호하는 범퍼보강재는 고강도화가 빠르게 진행되어, 현재는 석출경화강에 변태 조직 강화를 더한 780MPa급 이상의 초고강도강을 주로 사용하고 있으며, 1370MPa급 까지 적용하고 있다.

  • PDF

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

마찰교반접합공정을 적용하여 겹치기 접합을 실시한 복합조직강의 미세조직과 기계적 특성

  • Kim, Sang-Hyeok;Lee, Gwang-Jin;U, Gi-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.103.1-103.1
    • /
    • 2012
  • 본 연구는 차량경량화를 위하여 높은 인장강도와 우수한 인성을 가지는 590MPa급 이상조직강(Dual phase steel)을 이용하여 1991년 TWI(The Welding Institute)에서 개발된 마찰교반접합을 적용하여 접합을 실시하였다. 접합의 공정조건으로 툴의 회전속도는 250~350 RPM, 접합속도로는 50~350 mm/min로 겹치기접합을 실시하였다. 접합에서 사용된 툴은 Megastir에서 제작한 고융점마찰교반접합용 툴인 PCBN(Q-60)을 이용하였고 연구에 사용된 DP590은 포스코(POSCO)에서 제작된 1.4t(mm) 두께인 AHSS(advanced high strength steels)을 사용하였다. 모재인 DP590과 접합체의 미세조직은 광학현미경과 주사전자현미경을 이용하여 관찰하였으며 기계적 특성은 경도시험과 인장시험을 실시하여 조사하였다. 경도의 분포는 모재에서 약 220~230Hv이며 TMAZ부분에서 상승하기 시작하여 접합부에서 약 320Hv까지 상승하는 경향을 보였으며 인장시험 결과 접합속도 100~200 mm/min에서는 모든 시편이 모재에서 파단되어지는 것을 확인할 수 있었다. 위와 같은 결과 300~350 RPM, 100~200 mm/min의 공정조건에서는 접합이 성공적으로 이루어졌으며 차량경량화에 적용이 가능하다고 판단되어진다.

  • PDF

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.