• Title/Summary/Keyword: Dual-peak light emitting diode (LED)

Search Result 2, Processing Time 0.018 seconds

Effect of the difference in spectral outputs of the single and dual-peak LEDs on the microhardness and the color stability of resin composites (Single-peak LED와 dual-peak LED의 출력 파장 차이가 복합 레진 미세 경도와 색 안정성에 미치는 영향)

  • Park, Hye-Jung;Son, Sung-Ae;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • Objectives: To determine the effect of the spectral output of single and dual-peak light emitting diode (LED) curing lights on the microhardness and color stability of commercial resin composites formulated with camphorquinone and alternative photoinitiators in combination. Materials and Methods: Three light-polymerized resin composites (Z100 (3M ESPE), Tetric Ceram (Ivoclar Vivadent) and Aelite LS Posterior (Bisco)) with different photoinitiator systems were used. The resin composites were packed into a Teflon mold (8 mm diameter and 2 mm thickness) on a cover glass. After packing the composites, they were light cured with single-peak and dual-peak LEDs. The Knoop microhardness (KHN) and color difference (${\Delta}E$) for 30 days were measured. The data was analyzed statistically using a student's t-test (p < 0.05). Results: All resin composites showed improved microhardness when a third-generation dual-peak LED light was used. The color stability was also higher for all resin composites with dual-peak LEDs. However, there was a significant difference only for Aelite LS Posterior. Conclusions: The dual-peak LEDs have a beneficial effect on the microhardness and color stability of resin composites formulated with a combination of camphorquinone and alternative photoinitiators.

Red Organic LED with Dual Dopants of Rubrene and GDI 4234 (Rubrene/GDl 4234 Dual 도펀트를 이용한 적색 유기발광다이오드)

  • Jang, Ji-Geun;Kang, Eui-Jung;Kim, Hee-Won;Shin, Se-Jin;Gong, Myoung-Sun;Lim, Sung-Kyoo;Oh, Myoung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.309-310
    • /
    • 2005
  • In the fabrication of high performance red organic light emitting diode, 2-TNA TA [4,4',4" -tris (2-naphthylphenyl- phenylamino)-triphenylamine] as hole injection material and N PH [N,N'-bis (1-naphthyl) -N,N' -diphenyl-1, 1'-biphenyl-4,4'- diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by vacuum evaporation, And then, red color emission layer was deposited using Alq3 as a host material and Rubrene (5,6,11,12- tetraphenylnaphthacene) and GDI 4234 as dopants. Finally, small molecular weight OLED with the structure of ITO/2-TNATA/ NPB/Alq3+Rubrene+GDI4234/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode. respectively. Green OLED fabricated in our experiments showed the color coordinate of CIE(0.65,0.35) and the maximum luminescence efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.

  • PDF