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INTRODUCTION

The degree of resin polymerization achieved during

a restoration placement is a major factor in the suc-

cess and predictability of resin composite restora-

tions. The polymerization of resin composite depends

on many intrinsic conditions, such as the type of the

photoinitiator, composition of filler particles, shade

and degree of translucency of the materials. In addi-

tion, the effective spectral output and irradiance of

the light curing unit are needed for adequate poly-

merization.1,2

Camphorquinone (CQ) has been largely used as a

photoinitiator since the introduction of visible-light

activated resin composites. However, alternative

photoinitiators have been studied because the intense
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yellow hue of CQ can affect resin esthetics.3-5

Compounds derived from acylphosphine oxides

(MAPO-Lucirin TPO and BAPO-Irgacure 819) and

phenyl-propanedione (PPD) have been suggested as

photoinitiators for applications in adhesives and resin

composites to reduce the photoyellowing effect.3,4,6

Unlike the conventional composite resins (which

contain CQ only), the absorption peak of newly

developed composite resins (which contain an alter-

native photoinitiator) is in the near Ultraviolet (UV)

region and extends slightly into the visible wave-

lengths (< 420 nm).3 However, to date, the conven-

tional light emitting diode (LED) lights currently

used have been unsuitable for curing these alterna-

tive initiators due to the narrow emission spectrum.

These LED lights have a peak wavelength in the 470

nm range, which is ideal for curing traditional resin

composite using CQ as an activator. Therefore, the

degree of conversion of these resins will be inade-

quate if a single peak LED light is used,7 which may

result in decreased physical properties,8 color stabili-

ty9 and biocompatibility.8,10 The degree of monomer

conversion of resin composites can be measured by

indirect methods, such as surface hardness test11 and

intrinsic color shifting test.12,13

Dual peak and polywave third generation LED cur-

ing lights have been introduced to overcome this

problem. These LEDs deliver light in both the 450-

470 nm and 395-410 nm ranges. The manufacturers

claim that the new polywave LED is suitable for dif-

ferent photoinitiators and can be used with any den-

tal materials. However, few studies have evaluated

the performance of single-and dual-peak LEDs on

the market with commercial resin composites.

Furthermore, previous reports14-16 showed that resin

composites that use alternative photoinitiators were

inadequately polymerized using single-peak LED

curing lights.

Therefore, the present study examined the effect of

the difference in spectral output of single-and dual-

peak LEDs on the microhardness and color stability

of commercial resin composites formulated with CQ

and alternative photoinitiators (e.g., PPD and lucirin

TPO) in combination.

MATERIALS AND METHODS

In this study, three light-polymerized resin compos-

ites with different photoinitiator systems were used.

Z100 (3M ESPE, St Paul, MN, USA) use only CQ as

the photoinitiator, whereas Tetric Ceram (Ivoclar

Vivadent, Schaan, Liechtenstein) and Aelite LS

Posterior (Bisco, Schaumburg, IL, USA) appear to

use two photoinitiator systems, most likely CQ and

an alternative initiator (e.g., PPD or lucirin TPO).17

All resin composites were packed into a Teflon mold

(8 mm diameter and 2 mm thickness) on a cover

glass. After packing the composites, they were light

cured with the single-peak LEDs (Bluephase, Ivoclar

Vivadent, Amherst, NY, USA) and dual-peak LEDs

(Bluephase G2, Ivoclar Vivadent) to an equivalent

energy density (Table 1).

1. Knoop microhardness (KHN) measurement 

After light curing, the specimens (n = 5) were

stored in the dark at 37℃ with 100% relative

humidity for 24 hours. The Knoop microhardness

was measured at the top and bottom composite sur-

faces using a Knoop hardness Tester (MMT-7, MAT-

SUZAWA, Tokyo, Japan). The Knoop diamond

indenter applied a 25 g load for 15 seconds at three

points, all within 1 mm of the center of the compos-

ites. For each surface, a total of 15 hardness record-

ings were made and the mean was calculated.

Table 1. The light curing units (LCUs) used in this study

LCUs Manufacturer
Irradiance Irradiation time Energy density 

(mW/cm2) (sec) (J/cm)

Bluephase Ivoclar Vivadent Schaan, Liechtenstein 960 40 38.4

Bluephase G2 Ivoclar Vivadent Schaan, Liechtenstein 1,160 33 38.3

LCUs, light curing units. 
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2. Color difference (ΔE) measurement 

The specimens (n = 5) were stored in the dark at

room temperature for 24 hours. The measurements

were made according to CIE L*a*b* color scale rela-

tive to the CIE standard illuminant D65 over a white

background on a reflection spectrophotometer (CM-

3600d, Minolta, Tokyo, Japan) with specular compo-

nent excluded (SCE) geometry. The illuminating and

viewing configuration was CIE diffuse/8�geometry. 

After the measurements, the samples were immersed

for 30 days in a water bath at 60℃. After immersion,

the color measurements were performed again under

the same conditions using the same procedures. 

By applying the formula, ΔE =〔(ΔL*)2+(Δa*)2

+(Δb*)2〕1/2, it was possible to calculate ΔE and com-

pare the values before and after the aging treatment. 

3. Statistical analysis 

The student’s t-test was used to analyze the differ-

ences in the KHN values and ΔE values achieved

with the single- and dual-peak LEDs for all resin

composites (p = 0.05).

RESULTS

Tables 2 and 3 show the means and standard devi-

ations of the KHNs at the top and bottom surfaces of

the resin composites with the single-and dual-peak

LEDs. The student’s t-test indicated significant dif-

ferences in mean hardness achieved with the single-

and dual-peak LEDs for all resin composites tested

(p < 0.05). The microhardness was higher for all

materials cured with the dual-peak LED. The differ-

ence was greatest for Aelite LS Posterior, followed by

Tetric Ceram and Z100. The microhardness was

lower at the bottom than at the top for all composites

tested, particularly for Aelite LS Posterior.

Table 4 lists the difference in the color after 1

month of water aging. All resin composite showed a

certain degree of discoloration due to aging in water.

The color stability between products was different.

The student’s t-test showed a significantly different

color change between the single- and dual-peak

LEDs for Aelite LS Posterior (p < 0.05). However,

there was no significant difference between the LEDs

for Z100 and Tetric Ceram. 

Table 2. Means ± SDs of KHNs for each material at the top surface

Resin composite Single-peak Dual-peak
Student t-test

p-value

Filtek Z100 97.77 ± 4.30 104.15 ± 4.98 p < 0.05

Tetric Ceram 33.01 ± 3.16 44.45 ± 2.59 p < 0.05

Aelite LS Posterior 53.73 ± 6.00 94.76 ± 5.41 p < 0.05

SD, standard deviation; KHN, Knoop hardness number.

Table 3. Means ± SDs of KHNs for each material at the bottom surface

Resin composite Single-peak Dual-peak
Student t-test

p-value

Filtek Z100 81.79 ± 4.58 91.46 ± 3.68 p < 0.05

Tetric Ceram 31.37 ± 2.70 39.82 ± 3.65 p < 0.05

Aelite LS Posterior 32.65 ± 3.01 53.40 ± 7.85 p < 0.05

SD, standard deviation; KHN, Knoop hardness number.

Table 4. Difference in color (ΔE) after 1 month of water aging

Resin composite Single-peak Dual-peak
Student t-test

p-value

Filtek Z100 1.52 ± 0.26 0.94 ± 0.52 p > 0.05

Tetric Ceram 2.15 ± 0.45 1.44 ± 0.63 p > 0.05

Aelite LS Posterior 1.23 ± 0.40 0.62 ± 0.25 p < 0.05
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DISCUSSION

To produce a sufficient amount of free radicals for

adequate polymerization, resin composites must

receive sufficient total energy in the appropriate

wavelength range.18 The polymerization process may

be adversely affected if the LCU does not emit

enough light at the wavelengths absorbed by the

photoinitiators,17 which may result in reduced hard-

ness,8 decreased biocompatibility8,10 and decreased

color stability.9

Most traditional LED curing lights have a single

peak wavelength in the 470 nm range, which is ideal

for curing resin composites using CQ as a photoini-

tiator. However, some commercial composites employ

alternative photoinitiators, which respond to wave-

lengths < 420 nm. Therefore, these resin composites

might have incompatibility problems with single-

peak LED curing light.15,16 Accordingly, it is impor-

tant to determine the effect of the difference in spec-

tral output of the LEDs on the polymerization of

resin composites initiated with CQ and alternative

photoinitiators in combination. 

In this study, all resin composites showed improved

microhardness when a third-generation dual peak

LED light was used compared to those cured with a

single-peak LED cuing light. This may be because

the dual-peak LED curing lights deliver light in both

the 450-470 nm and the 395-410 nm ranges. With

the additional output in the 395-410 nm range, the

dual-peak LED curing lights polymerize resins to a

greater extent than the single-peak LED curing

lights at similar irradiance.15,16 The increase in micro-

hardness with the dual-peak LEDs using Tetric

Ceram and Aelite LS Posterior, which appear to

employ an alternative photoinitiator, was lower at

the bottom surface than at the top surface. This sug-

gests that the shorter wavelengths needed to activate

the alternative photoinitiator in these resins did not

reach a depth of 2 mm. This is probably due to

Rayleigh scattering of light. Shorter wavelengths are

scattered much more than longer wavelengths and

may not reach the bottom of the restoration.19 The

intrinsic color change of resin composites is resulted

from the alteration of resin matrix as well as the

interface between the matrix and fillers.20 In addi-

tion, the degree of conversion was reported to corre-

late with the discoloration.9

Three different intervals were used to distinguish

the color differences because the ability of the human

eye to appreciate the differences in color differs from

individual to individual. ΔE values < 1 were regarded

as undetectable by the human eye. Values of 1 < ΔE

< 3.3 were considered detectable by skilled operators

but clinically acceptable, whereas ΔE values > 3.3

were considered detectable by non-skilled persons

and were clinically unacceptable for that reason.21

All resin composites tested in this study were with-

in this limit when ΔE < 3.3 was used as the clinical-

ly acceptable standard. In this study, the color sta-

bility was higher for all resin composites cured with

the dual-peak LEDs. However, only Aelite LS

Posterior showed a significant difference. This can be

explained by the greater polymerization of the resin

composites with the dual-peak LEDs.

This study had some limitations. The type and

amount of alternative photoinitiators included in

resin composites tested were not known precisely

because manufacturers considered it to be commer-

cially sensitive. Therefore, further studies will be

needed to determine the performance of single-and

dual-peak LEDs on experimental resins formulated

with different concentrations and ratios of CQ and

alternative photoinitiators.  

Under the conditions of the current study, it can be

concluded that the dual-peak LEDs produce signifi-

cantly beneficial effect on the microhardness and

color stability of resin composites formulated with CQ

and alternative photoinitiators in combination. 
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국문초록

Single-peak LED와 dual-peak LED의 출력 파장 차이가 복합 레진 미세 경도와 색 안정성에 미치는 영향

박혜정1∙손성애 1∙허 복1∙김현철1∙권용훈2∙박정길1*

부산대학교 치의학전문대학원 1치과보존학교실, 2치과재료학교실

연구목적: 여러 광개시제 시스템에 의해 활성화되는 복합 레진을 기존의 single-peak LED와 최신의 dual-peak LED로 광

중합하였을 때의 누프 미세 경도와 수중 보관 후의 색 안정성 차이를 알아보기 위한 것이다. 

연구 재료 및 방법: Camphorquinone이 광개시제로 포함되어 있는 Z100과 다른 광개시제가 포함되어 있는 것으로 알려진

Tetric Ceram과 Aelite LS Posterior를 유리판 위에서 테플론 주형(직경 8 mm, 두께 2 mm) 내로 충전하고, single-peak

LED와 dual-peak LED로 광중합하였다. 중합 후 누프 미세 경도를 측정하였고 한 달 후 색 변화를 측정하였다. 광중합기

간의 미세 경도와 색 변화 차이를 student t-test로 분석하였다. 

결과: 모든 레진에서 dual-peak LED로 광중합하였을 때 미세 경도가 높게 나타났다. 색 안정성 역시 dual-peak LED로

광중합하였을 때 높게 나타났으나 Aelite LS Posterior에서만 통계학적으로 유의한 차이가 있었다. 

결론: 다른 광개시제가 포함되어 있는 복합 레진을 dual-peak LED로 광중합한 경우 미세 경도와 색 안정성에 있어서 더 좋

은 결과를 얻을 수 있었다. 

주요단어: 다른 광개시제; 미세 경도; 색 안정성; 출력 파장; Camphorquinone; Dual-peak light emitting diode (LED)
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