• Title/Summary/Keyword: Dual-motor drive system

Search Result 32, Processing Time 0.027 seconds

An Improvement of Multistep Response of PM Step Motor Using Dual Voltage Power Supply (Dual 전압공급에 의한 PM 스텝모우터의 다 스텝 응답개선)

  • Kim, Do-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 1988
  • In this paper, a high efficiency motor drive system which improves the multi-step response of PM step motors by reducing the transition time of the motor drive current, is studied by designing a dual-voltage drive circuit. The designed drive circuit eventually prevents the motor from decreasing drive torque while the stepping rate is increased. The method of designing a dual-voltage drive circuit with the motor specifications is suggested in order to improve the response of step rate and drive efficiency. Also, despite improving the power efficiency on motor driving, the response characterstics suggested by the motor manufacture's specifications are satisfied without any special deficiency.

  • PDF

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

Fault Tolerant Control Methods for Dual Type Independent Multi-Phase BLDC Motor under the Open-Switch Fault Conditions

  • Kim, Yong-Hyu;Heo, Hong-Jun;Park, June-Ho;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.722-732
    • /
    • 2018
  • Dual type Independent multi-phase BLDC Motor (DI-BLDCM) is designed to be robust to faulty conditions of motor and drive system. Despite the efforts of the motor design, open-switch faults of DI-BLDCM drive system cause the torque ripple of the motor. This torque ripple makes unwanted sound noise and mechanical vibration of associated systems. This paper proposes four methods for compensating the torque ripple and compares the characteristics of each proposed method. All proposed methods are able to reduce the torque ripple to similar level of the healthy condition, although the motor operates in open-switch fault conditions. However, these methods have different characteristics in various fault conditions. Therefore, from the results of the comparison, the suitable method is selected for the various fault conditions. The feasibility of the proposed methods is proved by the several experimental results.

Direct Torque Control of Five-leg Dual-PMSM Drive Systems for Fault-tolerant Purposes

  • Wang, Wei;Zhang, Jinghao;Cheng, Ming;Cao, Ruiwu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.161-171
    • /
    • 2017
  • To enhance the reliability of two-motor drive systems, this paper proposes an improved direct torque control (DTC) scheme (P-DTC) for five-leg dual-PMSM drive systems. First, the topology of a five-leg dual-PMSM drive system is illustrated. To clarify the analysis of the P-DTC, the standard DTC scheme for three-phase drive systems is presented. The operation of a five-leg dual-PMSM drive system is classified into three situations according to the definitions of the switching-vector unions. Compared with the existing DTC scheme (R-DTC), the P-DTC can minimize the replacement of active switching-vectors to zero switching-vectors. When this replacement cannot be avoided, the P-DTC uses a proposed master-slave selection principle to minimize the system error. Comparing with the R-DTC, the P-DTC has lower torque ripples, a wider speed range and a faster torque increasing response. Experiments have been carried out in the coupling and independent modes, and the effectiveness of the P-DTC is verified by the obtained results.

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

A Study on Driving Dual Motors with Single processor using Controller Area Network (CAN네트워크를 이용한 단일 프로세서에 의한 복수전동기 구동)

  • Lee Hong-Hee;Lee Seung-Yong;Jung Eui-Heon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.673-676
    • /
    • 2002
  • Real time communication is very important in factory automation system using FieldBus. In this paper, we Propose the method to drive dual motors with one controller using CAN In traditional induction motor control technique, two independent Inverters are used to drive dual motors independently. In this case, two controllers are needed. Our proposed dual motors control scheme which use only one microprocessor has many advantages in the view of economic and performance compared to conventional technique.

  • PDF

PC Based Distributed Control System of AGV with Multi-Thread Method (다중 쓰레드 기법을 미용한 AGV의 PC기반 분산제어 시스템)

  • Jun, Sung-Jae;Cho, Yon-Sang;Park, Heung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.107-114
    • /
    • 2005
  • With the recent progress in flexible manufacturing systems (FMS) in industry, increasing attention has been given to Automatic Guided Vehicle (AGV) systems. An AGV is a self-powered unit for transporting materials between stations without needing to be controlled by an operator. Such a system has several sensors to recognize the external state, and it is designed to travel between stations automatically without external assistance. To manage each device automatically in real time it requires a distributed controller with a main computer as the host, as well as a number of micro-controllers. In this study, an AGV system with dual motor drive was constructed. A Pentium 4 personal computer was set up as the main host for the distributed control, and this communicated with other micro-controllers in the management of the motor. The speed of each motor was also controlled by a micro-controller.

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Robust Control System of PMSM using Dual Adaptive Control Loop (이중 적응제어 루프를 이용한 영구자석 동기 전동기의 강인성 제어 시스템)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yoon, Myoung-Kyun;Kim, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.175-178
    • /
    • 1991
  • The drive system of servo motor is requested to have robustness of disturbance and parameter variation. However, the dynamics of PMSM drive change significantly by forced disturbance and parameter variation. Moreover, the state error caused by them should be suppressed completely and rapidly. In this paper, the vector-control system of PMSM using dual adaptive control loop is investigated. In the proposed system, linear adaptive control loop rapidly recovers the state error caused by both disturbance and parameter variation. In the dual adaptive control loop, the inner loop reduces the system sensitivity of parameter variation and disturbance, and the outer loop suppresses the state error caused by them completely. The proposed servo system is verified through a computer simulations and experimental results.

  • PDF