• Title/Summary/Keyword: Dual-hop Transmission

Search Result 19, Processing Time 0.022 seconds

Design of Distributed Beamforming for Dual-Hop Multiple-Access Relay Networks

  • Liu, Binyue
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.625-634
    • /
    • 2014
  • This paper studies a dual-hop multiple-access relay network where two independent source nodes transmit information to a common destination node with the aid of multiple single-antenna amplify-and-forward relays. Each relay node is subject to an individual power constraint. We focus on the design of distributed beamforming schemes for the relays to support the transmission rate requirements of the two sources. To this end, we first characterize the achievable rate region for this network via solving a sequence of corner point optimization problems proposed in this paper. We also develop several low-complexity suboptimal schemes in closed form. Two inner bounds of the achievable rate region are theoretically shown to be approximately optimal in two special scenarios. Finally, numerical results demonstrate the effectiveness of our proposed approaches.

Performance Analysis of Dual-Hop Cooperative Transmission with Best Relay Selection in a Rayleigh Fading Channel

  • Nessa, Ahasanun;Lee, Woo-Yong;Kim, Yong-Sun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.530-539
    • /
    • 2009
  • Wireless Relaying is a promising solutions to overcome the channel impairments and provides high data rate coverage that appear for beyond 3G mobile communications. In this paper we present end to end BER performance of dual hop wireless communication systems equipped with multiple Decode and Forward relays over Rayleigh fading channel with the best relay selection. We compare the BER performance of the best relay with the BER performance of single relay. We select the best relay based on the end to end channel conditions. We further calculate the outage probability of the best relay. It is shown that the outage probability of the best relay is equivalent to the outage probability when all relays take part in the transmission. We apply Orthogonal Space Time Block coding(OSTBC) at the source terminal. Numerical and simulation results are presented to verify our analysis.

Exploiting Optimal Throughput of Adaptive Relaying Based Wireless Powered Systems under Impacts of Co-channel Interference

  • Nguyen, Thanh-Luan;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2009-2028
    • /
    • 2018
  • Considering a dual-hop energy-harvesting (EH) relaying system, this paper advocates novel relaying protocols based on adaptive time power switching-based relaying (AR) architecture for amplify-and-forward (AF) mode. We introduce novel system model relaying network with impacts of co-channel interference (CCI) and derive analytical expressions for the average harvested energy, outage probability, and the optimal throughput of the information transmission link, taking into account the effect of CCI from neighbor cellular users. In particular, we consider such neighbor users procedure CCI both on the relay and destination nodes. Theoretical results show that, in comparison with the conventional solutions, the proposed model can achieve optimal throughput efficiency for sufficiently small threshold SNR with condition of reasonable controlling time switching fractions and power splitting fractions in concerned AR protocol. We also explore impacts of transmission distances in each hop, transmission rate, the other key parameters of AR to throughput performance for different channel models. Simulation results are presented to corroborate the proposed methodology.

Average Data Rate Analysis for Data Exchanging Nodes via Relay by Concurrent Transmission (데이타 교환 노드의 동시 전송 릴레이 이용을 위한 평균 데이터 전송률 분석)

  • Kwon, Taehoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.638-644
    • /
    • 2018
  • Relay systems have recently gained attentions because of its capability of cell coverage extension and the power gain as the one of key technologies for 5G. Relays can be exploited for small-cell base stations and the autonomous network, where communication devices communicate with each other cooperatively. Therefore, the relay technology is expected to enable the low power and large capacity communication. In order to maximize the benefits of using a limited number of relays, the efficient relay selection method is required. Especially, when two nodes exchange their data with each other via relay, the relay selection can maximize the average data rate by the spatial location of the relay. For this purpose, the average data rate is analyzed first according to the relay selection. In this paper, we analyzed the average data rate when two nodes exchange their data via dual-hop decode and forward relaying considering the interference by the concurrent transmission under Nakagami-m fading channel. The correctness of the analysis is verified by the Monte Carlo simulation. The results show that the concurrent transmission is superior to the non-concurrent transmission in the high required data rate region rather than in the low required data rate region.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

A Study on Wireless Home Network Platform for End-to-End Seamless Connection and TCP Performance Improvement (종단간 끊김없는 연결과 TCP 성능의 향상을 위한 무선 홈네트워크 플랫폼에 관한 연구)

  • Kim, Byoung-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1295-1309
    • /
    • 2007
  • A wireless access point is used for all communications in the infrastructure mode wireless home networking, including communication between mobile nodes in the same service area. When a mobile station in the infrastructure mode wireless home networking moves into a dead zone, the communication between the mobile station and the access point is disconnected. To solve this problem, the existing wireless home network platforms focus on the ad hoc mode wireless home networking. However, the performance of an ad hoc network is poorly decreased when the number of mobile participating in the ad hoc network increases. In addition, although the ad hoc routing technique is necessary to support seamless communication of mobile nodes, the existing routing protocols, such as AODV and DSR, do not consider that a wireless channel state could affect performance significantly. Therefore, we propose a wireless home networking platform based on the ESCOD (End-to-end Seamless multi-hop COnnection based on Dual network mode) technique incorporating the VLR (Virtual Link Routing) scheme that supports end-to-end seamless connections. Extensive experiments show that the proposed wireless home networking platform incorporating the VLR scheme outperforms wireless home networking platforms based on the AODV and the DSR routing protocols respectively in terms of low packet transmission failure rate, fast packet transmission time, high TCP performance, and a wider coverage area of wireless home networks.

  • PDF

Adaptive Dual-Hop Transmission Based On Hierarchical Modulation in UWB System (초광대역 시스템의 계층변조 기반 적응적 듀얼 홉 전송 기법)

  • Kim, Dae-Hwan;Song, Hyoung-Kyu;Cho, We-Duke
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.443-450
    • /
    • 2011
  • Recently, various transmission techniques for communication and broadcasting systems have been developed to meet the dramatically increasing requirement of consumers. Because UWB (Ultra-Wideband) is a wireless communication technique that supports high data rate with low power, it can satisfy the requirement and can be applied to various wireless communication services. The multi-band orthogonal frequency division multiplexing (MB-OFDM) system, one of UWB system, is the wireless communication system that satisfies the transmission characteristic for UWB and so it can be used for various wireless communication services. In this paper, we propose a scheme that uses hierarchical modulation which is applied in digital video broadcasting system at the source and adaptive modulation based on the channel quality at the relays. The simulation results have shown that the proposed scheme has both the advantages of the increased throughput by 33% and similar BER performance to conventional scheme.

Achievable Rate of Beamforming Dual-hop Multi-antenna Relay Network in the Presence of a Jammer

  • Feng, Guiguo;Guo, Wangmei;Gao, Jingliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3789-3808
    • /
    • 2017
  • This paper studies a multi-antenna wireless relay network in the presence of a jammer. In this network, the source node transmits signals to the destination node through a multi-antenna relay node which adopts the amplify-and-forward scheme, and the jammer attempts to inject additive signals on all antennas of the relay node. With the linear beamforming scheme at the relay node, this network can be modeled as an equivalent Gaussian arbitrarily varying channel (GAVC). Based on this observation, we deduce the mathematical closed-forms of the capacities for two special cases and the suboptimal achievable rate for the general case, respectively. To reduce complexity, we further propose an optimal structure of the beamforming matrix. In addition, we present a second order cone programming (SOCP)-based algorithm to efficiently compute the optimal beamforming matrix so as to maximize the transmission rate between the source and the destination when the perfect channel state information (CSI) is available. Our numerical simulations show significant improvements of our propose scheme over other baseline ones.