• Title/Summary/Keyword: Dual-head gamma camera

Search Result 14, Processing Time 0.027 seconds

Calculation of Renal Depth by Conjugate-View Method Using Dual-head Gamma Camera (이중 헤드 감마 카메라를 이용한 Conjugate-View 계수법에 의한 신장 깊이 도출)

  • Kim, Hyun-Mi;Suh, Tae-Suk;Choe, Bo-Young;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.378-388
    • /
    • 2001
  • Purpose: In this study, we developed a new method for the determination of renal depth with anterior and posterior renal scintigrams in a dual-head gamma camera, considering the attenuation factor $e^{-{\mu}x}$ of the conjugate-view method. Material and Method: We developed abdomen and kidney phantoms to perform experiments using Technetium-99m dimercaptosuccinic acid ($^{99m}Tc$-DMSA). The phantom images were obtained by dual-head gamma camera equipped with low-energy, high-resolution, parallel-hole collimators (ICONf, Siemens). The equation was derived from the linear integration of omission ${\gamma}$-ray considering attenuation from the posterior abdomen to the anterior abdomen phantom surface. The program for measurement was developed by Microsoft Visual C++ 6.0. Results : Renal depths of the phantoms were derived from the derived equations and compared with the exact geometrical values. Differences between the measured and the calculated values were the range of 0.1 to 0.7 cm ($0.029{\pm}0.15cm,\;mean{\pm}S.D.$). Conclusion: The present study showed that the use of the derived equations for renal depth measurements, combined with quantitative planar imaging using dual-head gamma camera, could provide more accurate results for individual variation than the conventional method.

  • PDF

Gamma Camera Based FDG PET in Oncology

  • Park, Chan-Hui
    • 대한핵의학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.45-53
    • /
    • 2002
  • Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories : conventional(c) and gamma camera $based_{(CB)}$ PET. $_{CB}PET$ is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more $_{CB}PET$ in operation than cPET in the USA. $_{CB}PET$ is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Ours was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The fellowing is a brief description of our clinical experience of FDG CBPET in oncology.

  • PDF

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

The Evaluation of Scattering Effects for Various Source Locations within a Phantom in Gamma Camera (감마카메라에서의 팬텀 내 선원 위치 변화에 따른 산란 영향 평가)

  • Yu, A-Ram;Lee, Young-Sub;Kim, Jin-Su;Kim, Kyeong-Min;Cheon, Gi-Jeong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.216-224
    • /
    • 2009
  • $^{131}I$ is a radiological isotope being used widely for treatment of cancer as emitting gamma-ray and it is also applied to estimate the function of thyroid for its accumulation in thyroid. However, $^{131}I$ is more difficult to quantitate comapred to $^{99m}Tc$, because $^{131}I$ has multiple energy gamma-ray emissions compared to $^{99m}Tc$ which is a mono energetic gamma-ray source. Especially, scattered ray and septal penetration resulted by high energy gamma ray have a bad influence upon nuclear medicine image. The purpose of this study was to estimate scatter components depending on the different source locations within a phantom using Monte Carlo simulation (GATE). The simulation results were validated by comparing with the results of real experiments. Dual-head gamma camera (ECAM, Chicago, Illinois Siemens) with high energy, general-purpose, and parallel hole collimators (hole radius: 0.17 cm, septal thickness: 0.2 cm, length: 5.08 cm) was used in this experiment. The NaI crystal is $44.5{\times}59.1\;cm$ in height and width and 0.95 cm in thickness. The diameter and height of PMMA phantom were 16 cm and 15 cm, respectively. The images were acquired at 5 different locations of $^{131}I$ point source within the phantom and the images of $^{99m}Tc$ were also acquired for comparison purpose with low energy source. The simulation results indicated that the scattering was influenced by the location of source within a phantom. The scattering effects showed the same tendency in both simulation and actual experiment, and the results showed that the simulation was very adequate for further studies. The results supported that the simulation techniques may be used to generalize the scattering effects as a function of a point source location within a phantom.

  • PDF

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF

Radius Intermedius Stenosis Induced Myocardial Perfusion Defect: Provened by the Fusion Images of Myocardial Perfusion SPECT and 64 Channel CTA (심근관류 SPECT와 64채널 전산화 단층혈관 촬영 사진 융합으로 증명된 radius intermedius 협착에 의한 심근관류 저하)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Park, Jong-Seon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.77-78
    • /
    • 2008
  • A 71-year-old woman was assigned to our department for Tc-99m myocardial perfusion SPECT(MPS) and coronary CT angiography. She admitted for substernal pain, via the ER, 2 days ago. The heart was scanned after intravenous injection of 925 MBq of $^{99m}Tc$-sestamibi adenosine-induced stress SPECT using dual head gamma camera (Hawkeye, GE healthcare. USA). The MPS shows decreased tracer uptake in the apical & mid area of anterior & lateral wall and mid & basal inferior wall. Coronary CT angiograph was obtained using Discovery VCT (GE healthcare). 3D angiography portrayed significant stenosis of ramus intermedius(RI) and posterolateral branch of right coronary artery(PLB) with fibrocalcified plaque. Two images were fused using Cardiac IQ fusion softwear package (Advantage workstation 4.4, GE healthcare) The fusion images explain the perfusion defect of anterior, lateral and inferior wall is due to stenosis of the RI and PLB. And 3 days later, coronary angiography was done and revealed the marked stenosis of RI and PLB. Then balloon angioplasty and stent was instituted in RI. Cardiac SPECT/CT fusion imaging provides additional information about hemodynamic relevance and facilitates lesion interpretation by allowing exact allocation of perfusion defects to its subtending coronary artery.

Reference Values of Functional Parameters in Gated Myocardial Perfusion SPECT : Comparison with $QGS^{\circledR}$ and $4DM^{\circledR}$ Program (게이트 심근 관류 스펙트의 심기능 지표의 정상 참고값 : $QGS^{\circledR}$ 프로그램과 $4DM^{\circledR}$ 프로그램의 비교)

  • Jeong, Young-Jin;Park, Tae-Ho;Cha, Kwang-Soo;Kim, Moo-Hyun;Kim, Young-Dae;Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.430-437
    • /
    • 2005
  • Purpose: The objectives of this study were - First, to determine the normal range of left ventricular end diastolic volume (EDV), end systolic volume (ESV) and election fraction (EF) from gated myocardial perfusion SPECT for Quantitative Gated SPECT (QGS) and 4D-MSPECT (4DM), respectively. Second, to evaluate the relationships between values produced by both software packages. Materials & Methods: Tc-99m MIBI gated myocardial perfusion SPECT were performed for 77 patients (mean age: $49.6{\pm}13.7y$, n=37(M), 40(F)) with a low likelihood (<10%) of coronary artery disease (CAD) using dual head gamma camera (E.CAM, Siemens, USA). Left ventricular EDV, ESV and EF were automatically measured by means of QGS and 4DM, respectively. Results: in QGS, the mean EDV, ESV and EF for all patients were $78.2{\pm}25.2ml,\;27.4{\pm}12.9ml\;and\;66.6{\pm}8.0%$ at stress test respectively, not different from rest test (p>0.05). In 4DM, the mean EDV, ESV and EF for all patients were $89.1{\pm}26.4ml,\;29.1{\pm}12.8ml\;and\;68.5{\pm}6.7%$ at stress test. Most cases in 4DM, there was no significant difference statistically between stress and rest test (p>0.05). But statistically significant difference was found in EF ($68.5{\pm}6.7%$ at stress vs $70.9{\pm}8.0%$ at rest, p<0.05). Correlation coefficients between the methods for EDV, ESV and EF were comparatively high (0.95, 0.93, 0.71 at stress test and 0.95, 0.90, 0.69 at rest test, respectively). However, Bland-Altman plots showed a large range of the limit value of agreement for EDV, ESV and EF between both methods ($-30ml{\sim}10ml,\;-12ml{\sim}8ml,\;-14%{\sim}11%$ at stress test and $-32ml{\sim}5ml,\;-13ml{\sim}13ml,\;-18%{\sim}12%$ at rest test). Conclusion: We found the normal ranges of EDV, ESV and EF for patients with a low likelihood of CAD in both methods. We expect these values will be a good reference to interpret gated myocardial perfusion SPECT. Although good correlation was observed between both methods, they should not be used interchangeably. Therefore, when both programs are used at the same site, it will be important to apply normal limits specific to each method.

Assessment of Vascularization within Hydroxyapatite Ocular Implant by Bone Scintigraphy: Comparative Analysis of Planar and SPECT Imaging (Hydroxyapatite 안구보충물삽입술 후 골신티그라피를 이용한 섬유혈관증식 평가: 평면영상과 SPECT 영상에서의 비교)

  • Lim, Seok-Tae;Sohn, Myung-Hee;Park, Soon-Ah
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 1999
  • Purpose: Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to Prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Materials and Methods: Seventeen patients (M:F: 12:5, mean age; $50.4{\pm}17.5$ years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: $197{\pm}81$ days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. Results: All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern was 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization ($1.96{\pm}0.87$ vs $1.17{\pm}0.08$, p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization ($8.44{\pm}5.45$ vs $2.20{\pm}0.87$, p<0.05). Conclusion: In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy.

  • PDF