• Title/Summary/Keyword: Dual-Energy

Search Result 1,059, Processing Time 0.033 seconds

Anti-obese and Blood Flow Improvement Activities of Ginseng Berry on the 45%Kcal High Fat Diet Supplied Mouse

  • Lee, Sol;Lee, Hae-Jeung;Chun, Yoon-Seok;Seol, Du-jin;Kim, Jong-Kyu;Ku, Sae-Kwang;Lee, Young-Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.107-127
    • /
    • 2018
  • Objectives : The present study investigated the anti-obese and blood flow improvement activities of aqueous extracts of ginseng berry (GBe) on the mild diabetic obese mice as compared with metformin. Methods : After end of 56 days of continuous oral administrations of GBe 150, 100 and 50 mg/kg, or metformin 250 mg/kg, anti-obese and blood flow improvement effects - the changes of body weights, body and abdominal fat density by in live dual-energy x-ray absorptionmetry (DEXA), tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) levels, aorta and serum cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and endothelin (ET)-1 levels, aorta phosphorylated PI3K (pPI3K), phosphorylated Akt (pAkt) and phosphorylated p38 MAPK (pp38 MAPK) levels were systemically analyzed. In addition, aorta vascular dilation and constriction related gene mRNA expressions - PI3K, Akt, eNOS, p38 MAPK and ET-1 were also analyzed by realtime RT-PCR. Results : The obesity and related blood flow impairment, induced by 84 days of continuous HFD supply, were significantly inhibited by 56 days of continuous oral treatment of GBe 150, 100 and 50mg/kg, dose-dependently, and they also dramatically normalized the changes of the aorta vascular dilation and constriction related gene mRNA expressions, also dose-dependently. Especially, GBe 150 mg/kg constantly showed favorable inhibitory activities against type II diabetes related obesity and vascular disorders through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities, as comparable to those of metformin 250 mg/kg in HFD mice. Conclusion : By assessing the key parameters for anti-obese and blood flow improvement activities on the HFD-induced mild diabetic obese mice, the present work demonstrated that GBe 150, 100 and 50 mg/kg showed favorable anti-obese and blood flow improvement effects in HFD-induced type II diabetic mice, through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities.

External cross-validation of bioelectrical impedance analysis for the assessment of body composition in Korean adults

  • Kim, Hyeoi-Jin;Kim, Chul-Hyun;Kim, Dong-Won;Park, Mi-Ra;Park, Hye-Soon;Min, Sun-Seek;Han, Seung-Ho;Yee, Jae-Yong;Chung, So-Chung;Kim, Chan
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • Bioelectrical impedance analysis (BIA) models must be validated against a reference method in a representative population sample before they can be accepted as accurate and applicable. The purpose of this study was to compare the eight-electrode BIA method with DEXA as a reference method in the assessment of body composition in Korean adults and to investigate the predictive accuracy and applicability of the eight-electrode BIA model. A total of 174 apparently healthy adults participated. The study was designed as a cross-sectional study. FM, %fat, and FFM were estimated by an eight-electrode BIA model and were measured by DEXA. Correlations between BIA_%fat and DEXA_%fat were 0.956 for men and 0.960 for women with a total error of 2.1%fat in men and 2.3%fat in women. The mean difference between BIA_%fat and DEXA_%fat was small but significant (P < 0.05), which resulted in an overestimation of $1.2{\pm}2.2$%fat (95% CI: -3.2-6.2%fat) in men and an underestimation of $-2.0{\pm}2.4$%fat (95% CI: -2.3-7.1%fat) in women. In the Bland-Altman analysis, the %fat of 86.3% of men was accurately estimated and the %fat of 66.0% of women was accurately estimated to within 3.5%fat. The BIA had good agreement for prediction of %fat in Korean adults. However, the eight-electrode BIA had small, but systemic, errors of %fat in the predictive accuracy for individual estimation. The total errors led to an overestimation of %fat in lean men and an underestimation of %fat in obese women.

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

A Study on the Change of Bone Mineral Density(BMD) by Life Habit and Physical Condition (성인의 신체조건 및 생활습관에 따른 골밀도 변화에 대한 연구)

  • Kim, Sun-Geun
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.177-184
    • /
    • 2006
  • Purpose: To evaluate the correlation between BMD and life habit such as drinking. exercise smoking or physical condition such as age, sex, height, weight, body mass index(BMI). Materials and Methods: I evaluated the BMD of the femoral neck and L2-L4 spines of 321 persons who took a regular health screening in Woosuk university oriental medical hospital from February to April in 2006 by dual energy bone mineral densitometry. Results: The age of persons ranged from 20 years to 75 years(mean $45.10{\pm}11.54$) and there were 160 males and 161 females. In males, BMD of the femoral head was highest at 2nd decade, BMD of the spine was highest at 4th decade, and BMD of both femoral head and lumbar spine was lowest at 6th decade. In fenales, BMD of both femoral head and lumbar spine was highest at 4th decade and lowest at 6th decade. Among the various physical conditions, only height of persons showed significant correlation with BMD in both males and females. BMD was increased according to increasing height. In males, BMD of persons who had habit such as drinking, exercise or smoking did not show significant change statistically. But in females, drinking group showed high BMD relative to non-drinking group in both femoral head and lumbar spine. Conclusion: BMD was different according to age, sex, height and life habit. Especially aged people showed osteoporotic change progressively. More persistent effort is needed to find out the factors decreasing BMD for prevention of problems by osteoporosis.

  • PDF

The Association between Changes in Food and Nutrient Intakes and Changes in Bone Metabolic Indicators in Postmenopausal Women with Osteopenia after a 12-week Intervention of Nutrition Education and Aerobic Exercise (폐경 후 골감소증 여성에 대한 12주간의 영양교육과 운동 중재 전.후 식품 및 영양소 섭취량 변화와 골밀도 지표 변화와의 관계)

  • Kim, Seo-Jin;Kang, Suh-Jung;Park, Yoon Jung;Hwang, Ji-Yun
    • Korean Journal of Community Nutrition
    • /
    • v.18 no.3
    • /
    • pp.213-222
    • /
    • 2013
  • Few studies investigated the effects of nutrition education and exercises in women with osteopenia. This study examined the relationship between changes in dietary intakes and changes in indicators related to bone health in postmenopausal women with osteopenia (-2.5 ${\leq}$ T-score ${\leq}$ 1) after a 12-week intervention. Thirty-one postmenopausal women aged > 50 years residing in Seoul were recruited and participated in nutritional education regarding bone health and general nutrition practices and aerobic exercises (three times a week; 60 min per session). Twenty-five subjects completed the study and were eligible for the analysis. Bone mineral density (BMD) at femoral neck was measured by dual energy x-ray absorptiometry. Serum calcium, osteocalcin, and intact parathyroid hormone (PTH) were also measured. Dietary intake was estimated by using a one-day 24 recall by a clinical dietitian. After 12 weeks, meat consumption increased (P = 0.028) but vegetable intake decreased (P = 0.005). Intakes of animal protein (P = 0.024), vitamin B1 (P = 0.012) and vitamin $B_2$ (P = 0.047) increased, and sodium intake decreased (P = 0.033). Intact PTH (P = 0.002) decreased and osteocalcin (P = 0.000) increased, however, BMD decreased (P = 0.000). Changes in mushroom consumption were positively correlated with femoral neck BMD (r = 0.673, P = 0.003). Changes in animal iron intake were negatively correlated with intact PTH (r = -0.488, P = 0.013) but were positively correlated with osteocalcin (r = 0.541, P = 0.005). These results suggested that the association between animal iron intake and biochemical markers of bone turnover may play an important role in bone metabolism. Further studies are needed to shed light on complicated mechanisms of diet, hormonal levels of bone metabolism, and bone density.

Factors Affecting to Bone Mineral Density in Postmenopausal Women (폐경기 여성의 골밀도에 영향을 주는 인자)

  • Jung, Seung-Pil;Lee, Keun-Mi;Lee, Suk-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.13 no.2
    • /
    • pp.261-271
    • /
    • 1996
  • Introduction: Osteoporosis, the most common metabolic bone disorder, is a condition of reduced bone density and increased susceptibility to fractures. Osteoporosis is a major public health problem and a significant cause of morbidity in postmenopausal women. Therefore family physicians as primary care physicians are in a key position for preventing and treating this disorder. So we studied the factors affecting to bone mineral density in postmenopausal women. Materials and Methods: A total of 136 spontaneous postmenopausal women were participated in the study. They have measured spinal bone mineral density by dual energy x-ray absorptiometry from January 1992 to June 1995 at Yeungnam University Hospital. Age, height, weight, age at menarche and menopause, number of child and breast feeding child, history of oral pill ingestion, family history of osteoporosis, amount of milk and coffee ingestion, consumption of tobacco and alcohol and physical activity were assessed by qustionnaire and medical records. Results: The mean age is 55.2 and mean age at menopause is 47.9. Height, weight and physical activity were significantly positive correlated to bone mineral density. But age, duration after menopause and number of child were significantly negative correlated. Also age, height, weight, physical activity and duration after menopause were significantly correlated to % age-matched bone mineral density. In multiple regression analysis, which dependent variable is bone mineral density, duration after menopause, physical activity and weight were significant contributors. Duration after menopause is most the largest contributor. In multiple regression analysis, which dependent variable is % age-matched bone mineral density to adjust the age effect, physical activity and weight were significant contributors. Physical activity is most the largest contributor. Conclusions: Among factors affecting to BMD in postmenopausal women, physical activity and weight were more important factors. Therefore continuous physical activity is significant factor to prevent osteoporosis in postmenopausal women.

  • PDF

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Immunochemical Studies for the Characterization of Purified $(Na^+,\;K^+)-ATPase$ and Its Subunits with a Special Reference of Their Effect on Monovalent Cation Transport in Reconstituted $(Na^+,\;K^+)-ATPase$ Vesicles

  • Rhee, H.M.;Hokin, L.E.
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.35-49
    • /
    • 1990
  • A highly purified $(Na^+,\;K^+)-ATPase$ from the rectal gland of Squalus acanthias and from the electric organ of Electrophorus electricus has been used to raise antibodies in rabbits. The 97,000 dalton catalytic subunit and glycoprotein derived from the rectal gland of spiny shark were also used as antigens. The two $(Na^+,\;K^+)-ATPase$ holoenzymes and the two shark subunits were antigenic. In Ouchterlony double diffusion experiments, these antibodies formed precipitation bands with their antigens. Antibodies prepared against the two subunits of shark holoenzyme also formed precipitation bands with their antigens and shark holoenzyme, but not with eel holoenzyme. These observations are in good agreement with inhibitory effect of these antibodies on the catalytic activity of $(Na^+,\;K^+)-ATPase$ both from the shark and the eel, since there is very little cross-reaction between the shark anticatalytic subunit antibodies and the eel holoenzyme. The maximum antibodies titer of the anticatalytic subunit antibodies is found to be 6 weeks after the initial single exposure to this antigen. Multiple injections of the antigen increased the antibody titer. However, the time required to produce the maximum antibody titer was approximately the same. These antibodies also inhibit catalytic activity of $(Na^+,\;K^+)-ATPase$ vesicles reconstituted by a slow dialysis of cholate after solubilization of the enzyme in a presonicated mixture of cholate and phospholipid. In these reconstituted $(Na^+,\;K^+)-ATPase$ vesicles, effects of these antibodies on the fluxes of $Na^+$, $Rb^+$, and $K^+$ were investigated. Control or preimmune serum had no effect on the influx of $^{22}Na^+$ or the efflux of $^{86}Rb^+$. Immunized sera against the shark $(Na^+,\;K^+)-ATPase$ holoenzyme, its glycoprotein or catalytic subunit did inhibit the influx of $^{22}Na^+$ and the efflux of $^{86}Rb^+$. It was also demonstrated that these antibodies inhibit the coupled counter-transport of $Na^+$ and $K^+$ as studied by means of dual labeling experiments. However, this inhibitory effect of the antibodies on transport of ions in the $(Na^+,\;K^+)-ATPase$ vesicles is manifested only on the portion of energy and temperature dependent alkali metal fluxes, not on the portion of ATP and ouabain insensitive ion movement. Simultaneous determination of effects of the antibodies on ion fluxes and vesicular catalytic activity indicates that an inhibition of active ion transport in reconstituted $(Na^+,\;K^+)-ATPase$ vesicles appears to be due to the inhibitory action of the antibodies on the enzymatic activity of $(Na^+,\;K^+)-ATPase$ molecules incorporated in the vesicles. These findings that the inhibitory effects of the antibodies specific to $(Na^+,\;K^+)-ATPase$ or to its subunits on ATP and temperature sensitive monovalent cation transport in parallel with the inhibitory effect of vesicular catalytic activity by these antibodies provide direct evidence that $(Na^+,\;K^+)-ATPase$ is the molecular machinery of active cation transport in this reconstituted $(Na^+,\;K^+)-ATPase$ vesicular system.

  • PDF

Beneficial effect of fish oil on bone mineral density and biomarkers of bone metabolism in rats (어유의 n-3 지방산이 흰쥐의 골밀도와 골격대사지표에 미치는 영향)

  • Yoon, Gun-Ae
    • Journal of Nutrition and Health
    • /
    • v.45 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • This study evaluated the effect of fish oil rich in n-3 fatty acids on bone characteristics in Sprague-Dawley rats. Weanling male rats were randomized to receive either a diet containing high fish oil (FO), fish oil blended with corn oil (FICO), or soy oil rich in n-6 fatty acids (SO) for 4 weeks. All diets provided 70 g/kg fat based on the AIN-93G diet. Growth and biomarkers of bone metabolism were analyzed, and femur bone characteristics were measured by dual-energy X-ray absorptiometry. After the dietary treatment, no significant differences among the diet groups were observed for serum concentrations of Ca, parathyroid hormone, calcitonin, or osteocalcin. Alkaline phosphatase activity was significantly greater in FO-fed rats compared to that in the FICO and SO groups, whereas no difference in deoxypyridinoline values was observed, supporting the positive effect of a FO diet on bone formation. These results were accompanied by a significant increase in femur bone mineral density (BMD) in FO-fed rats. These findings suggest that providing fish oil rich in n-3 fatty acids correlates with higher alkaline phosphatase activity and BMD values, favoring bone formation in growing rats.

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.