• Title/Summary/Keyword: Dual steel structure system

Search Result 22, Processing Time 0.02 seconds

A simplified seismic design method for low-rise dual frame-steel plate shear wall structures

  • Bai, Jiulin;Zhang, Jianyuan;Du, Ke;Jin, Shuangshuang
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.447-462
    • /
    • 2020
  • In this paper, a simplified seismic design method for low-rise dual frame-steel plate shear wall (SPSW) structures is proposed in the framework of performance-based seismic design. The dynamic response of a low-rise structure is mainly dominated by the first-mode and the structural system can be simplified to an equivalent single degree-of-freedom (SDOF) oscillator. The dual frame-SPSW structure was decomposed into a frame system and a SPSW system and they were simplified to an equivalent F-SDOF (SDOF for frame) oscillator and an equivalent S-SDOF (SDOF for SPSW) oscillator, respectively. The analytical models of F-SDOF and S-SDOF oscillators were constructed based on the OpenSees platform. The equivalent SDOF oscillator (D-SDOF, dual SDOF) for the frame-SPSW system was developed by combining the F-SDOF and S-SDOF oscillators in parallel. By employing the lateral force resistance coefficients and seismic demands of D-SDOF oscillator, the design approach of SPSW systems was developed. A 7-story frame-SPSW system was adopted to verify the feasibility and demonstrate the design process of the simplified method. The results also show the seismic demands derived by the equivalent dual SDOF oscillator have a good consistence with that by the frame-SPSW structure.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Seismic Performance of Dual Damper System Using High Damping Rubber and Steel (고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능)

  • Kim, Jung-Uk;Kim, Dong-Keon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.

An Experiment Study on Verification for the Performance of Seismic Retrofit System Using of Dual Frame With Different Eigenperiod (진동주기가 다른 듀얼프레임을 이용한 내진보강시스템의 성능검증을 위한 실험적 연구)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik;Kim, Young-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.91-100
    • /
    • 2018
  • The new seismic retrofit system in study propose is the Dual system, which aims to be applied to the seismically vulnerable low-story buildings. The Dual system is composed of existing structure, external retrofit frame and hysteretic steel dampers installed between former two components. The Dual system dissipates the energy by plastic deformation of steel damper caused by relative displacement due to the differences in stiffness, weight, and eigenperiod of each components. The dynamic test with shaking table was performed to verify the seismic performance of the proposed Dual system. As a result of the dynamic test, it is expected that the Dual system will improve the seismic performance due to the reduction of strain of 56% and the damage reduction of 93%, even though the energy is 1.84 times higher than that of the dual system. And the results of the study are presented as basic data of the study for setting the design range of the dual system.

Seismic Performance Evaluation of Steel Moment Frame Factory Building with Slender Braces (세장한 가새가 사용된 철골모멘트골조 공장시설물의 내진 성능평가)

  • Kim, Dong Yeon;Cho, Jae Chul;Hwang, Sunwoo;Kim, Taejin;Kim, Jong Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • 'Seismic Performance Evaluation Method for Existing Buildings (2013)' developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

Development of Hybrid Prototype Dual Load Cell Structure (하이브리드 프로토타입 듀얼 로드 셀 구조 개발)

  • Ham, Juh-Hyeok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.373-380
    • /
    • 2020
  • We have developed the hybrid prototype load cell structures. These developed load cell structures may increase the reliability of the load sensing by deriving the load values through the double sensing method through the vertical maximum deflection and bending stress of the simple beams. For this purpose, the structure design was performed so that the load value, the deflection and stress value could be output to the same value through the optimal structure design. The structurally designed dimensions reaffirmed the accuracy of the design through the structural analysis program and the matching of the load value and the deflection value. Based on the designed structural dimension, the prototype form was constructed through laser cutting and production using hot rolled steel materials. The developed prototype load cell structure can be used as good educational material in various subjects such as material mechanics, steel structure design, measurement engineering, and mechatronics engineering. It is also believed that the measurement system ideas can inform the occurrence of errors in the event of a problem, and if a major accident caused by a sensing error is predicted, it will show good utilization to prevent accidents.

Seismic Response of Haunch Repaired Steel MRFs: A Case Study (헌치로 보강된 철골모멘트 골조의 지진 응답: 사례연구)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.173-181
    • /
    • 1997
  • To investigate the effects of haunch repair on the system seismic performance of steel moment-resisting frames (steel MRFs), a case study was conducted for a 13-story frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 1.7% radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80%(for the Oxnard record) and 70%(for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

  • PDF

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.