• Title/Summary/Keyword: Dual sensor

Search Result 286, Processing Time 0.03 seconds

Transparent Manipulators Accomplished with RGB-D Sensor, AR Marker, and Color Correction Algorithm (RGB-D 센서, AR 마커, 색수정 알고리즘을 활용한 매니퓰레이터 투명화)

  • Kim, Dong Yeop;Kim, Young Jee;Son, Hyunsik;Hwang, Jung-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.293-300
    • /
    • 2020
  • The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.

Ratiometric pH Measurements Using LysoSensor DND-192

  • Kang, Jung-Sook;Kostov, Yordan
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.384-388
    • /
    • 2002
  • A method for the ratiometric pH sensing using LysoSensor DND-192 is presented in this paper. It works in the physiological pH range. It is based on the use of two fluorophores which differ significantly in their lifetimes. As the discrimination of their emissions is performed through two different frequencies, this method can allow significant overlap of the emission spectra. A simple long-pass filter, or a combination of long-and short-pass filters, was used instead of narrow-bandpass devices. Importantly, the measurements were carried out under strong ambient light. The method could be used in a wide variety of applications, such as intracellular measurements, microscopy, bioprocess monitoring, etc.

An Optimization method for the Dual type SAW ladder filter (이중구조 SAW 필터의 최적 설계법)

  • Lee Youngjin;Lee Seunghee;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.367-370
    • /
    • 1999
  • 일반적 인 SAW 필터에서 발생하는 선형성의 한계 및 천이대역의 특성을 개선하기 위한 새로운 구조의 이중구조 사다리형 SAW 필터의 최적 설계 방법을 제시하고 그 가능성을 확인하였다. 이중구조 SAW 필터는 일반적인 사다리형 필터의 구조를 바탕으로 하되, 두 개의 서로 다른 필터가 각각 주어진 대역사양을 반반씩 만족시켜 전체의 필터특성이 구현될 수 있도록 하였다. 특히 고주파 대역에서 만족시키기 어려운 정재파비 및 뛰어난 천이대역 특성을 만족시킬 수 있는 장점을 가지며, 이를 위해 withdrawal 가중기법 및 기판상에 encp화된 마이크로 스티 립라인 인덕터를 이용하였다. 우선 이중 구조 필터구조를 결정한 후, microstrip 라인 인덕터의 위치 및 인덕턴스 변화에 따른 필터특성 변화를 살펴보았으며, 필터의 각종 형상변수의 변화에 따른 필터 특성변화를 조사하였다. 이상의 결과를 바탕으로 새로운 방법의 이중구조 SAW 필터의 설계방법을 제시하였으며 그 타당성을 검증하기 위해 1.8 GHz 대역의 RF 필터에 대한 설계 결과를 나타내었다.

  • PDF

Model-Free Hybrid Fault Detection and Isolation For UAV Inertial Measurement Sensors (무인기 관성측정 센서의 비모델 복합 고장진단기법)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • In this paper, a redundancy management system for aircraft is studied, and FDI (Fault Detection and Isolation) algorithm of inertial sensor system is proposed. UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional FDI method cannot isolate multiple faults in a triple redundancy system. In this paper, hardware based FDI technique is proposed, which combines a parity equation approach with the wavelet based technique, which is a model-free FDI method. To verify the effectiveness of the proposed FDI method, numerical simulations are performed.

A Study on the Relative Localization Algorithm for Mobile Robots using a Structured Light Technique (Structured Light 기법을 이용한 이동 로봇의 상대 위치 추정 알고리즘 연구)

  • Noh Dong-Ki;Kim Gon-Woo;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.678-687
    • /
    • 2005
  • This paper describes a relative localization algorithm using odometry data and consecutive local maps. The purpose of this paper is the odometry error correction using the area matching of two consecutive local maps. The local map is built up using a sensor module with dual laser beams and USB camera. The range data form the sensor module is measured using the structured lighting technique (active stereo method). The advantage in using the sensor module is to be able to get a local map at once within the camera view angle. With this advantage, we propose the AVS (Aligned View Sector) matching algorithm for. correction of the pose error (translational and rotational error). In order to evaluate the proposed algorithm, experiments are performed in real environment.

ECG & Temperature Measurement Wireless Sensor used Ag/AgCl Thin-Film (Ag/Agcl 박막을 이용한 ECG 및 온도 측정용 무선센서)

  • Lim, Jin-Hee;Nam, Hyo-Duck;Jung, Woo-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.342-343
    • /
    • 2007
  • In this paper, we developed an integrated miniaturized device which acquires and transmits the signal of ECG an interested heartbeat and body's temperature. Electrocardiogram(ECG) is a recording of the electrical activity on the body surface generated by heart. ECG & temperature measurement is collected by wireless sensor (for Ag/AgCl Thin-Film) placed at designated locations on the body. It is that dual wireless sensor will apply variously to Ubiquitous & Healthcare System.

  • PDF

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.

Dual Image Sensor and Image Estimation Technique for Multiple Optical Interference Cancellation in High Speed Transmission Visible Light Communication Environment (고속 전송 가시광통신 환경에서의 다중 광 간섭 제거를 위한 듀얼 이미지 센서 및 이미지 추정기법)

  • Han, Doohee;Lee, Kyujin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.480-483
    • /
    • 2018
  • In this paper, we study the interference canceling and image sensing processing technology of multiple light sources for high speed transmission in CMOS sensor based visible light communication system. To improve transmission capacity in optical camera communications via image sensors, different data must be transmitted simultaneously from each LED. However, multiple LED light source environments for high-speed transmission can cause interference between adjacent LEDs. In this case, since the visible light communication system generally uses intensity modulation, when a plurality of LEDs transmit data at the same time, it is difficult to accurately detect the respective LEDs due to the light scattering interference of the adjacent LEDs. In order to solve this problem, the ON / OFF state of many LEDs of the light source is accurately recognized by using a dual CMOS sensor, and the spectral estimation technique and the pixel image signal processing technique of each LED are proposed. This technique can accurately recognize multiple LED pixels and improve the total average bit error rate and throughput of a MISO-VLC system.

  • PDF

A Dual-layer Energy Efficient Distributed Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 이중 레이어 분산 클러스터링 기법)

  • Yeo, Myung-Ho;Kim, Yu-Mi;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.84-95
    • /
    • 2008
  • Wireless sensor networks have recently emerged as a platform for several applications. By deploying wireless sensor nodes and constructing a sensor network, we can remotely obtain information about the behavior, conditions, and positions of objects in a region. Since sensor nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispensable to prolong the lifetime of a sensor network as long as possible. In this paper, we propose a novel clustering algorithm that distributes the energy consumption of a cluster head. First, we analyze the energy consumption if cluster heads and divide each cluster into a collection layer and a transmission layer according to their roles. Then, we elect a cluster head for each layer to distribute the energy consumption of single cluster head. In order to show the superiority of our clustering algorithm, we compare it with the existing clustering algorithm in terms of the lifetime of the sensor network. As a result, our experimental results show that the proposed clustering algorithm achieves about $10%{\sim}40%$ performance improvements over the existing clustering algorithms.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.