• Title/Summary/Keyword: Dual buoyancy engine

Search Result 2, Processing Time 0.015 seconds

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

Hull Design and Dynamic Performance Analysis for ray-type Underwater Glider (가오리형 수중글라이더의 형상설계 및 운동성능 해석)

  • Lee, Sung-Wook;Jeong, Jae-Hun;Jeong, Sang-Ki;Choi, Hyeung-Sik;Kim, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.343-350
    • /
    • 2017
  • Underwater glider with a single buoyancy engine could generally obtain propulsive forces by moving the center of buoyancy and gravity. Futhermore, The hull and internal structure of underwater glider are designed according to the purpose of long-time operation, high speed and a wide variety of payloads (sensors, communications and etc.). In this paper, Ray-type underwater glider featuring flatfish is considered in view of hydrodynamics. The hull design is especially performed by the analysis of fluid resistance and dynamic performance. The resistance performance is analyzed using the Computational Fluid Dynamics (CFD). In addition, a simulation program is implemented in order to verify the validity of dynamics modeling and dynamic performances.