• Title/Summary/Keyword: Dual Sensor

Search Result 285, Processing Time 0.027 seconds

Characteristic of Dual Air Gap AFPM along Flux Position Estimation (양면 축방향 영구자석 전동기에서 자속위치 검출에 따른 특성)

  • Hong, Mun-Hwan;Kim, Chul-Ho;Lee, U-Seok;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.828-830
    • /
    • 2002
  • Axial Flux Permanent Magnet motor could widely be used for low speed and high torque applications. In this paper, to analyse the sensor positioning effect of AFPM motor which has a new concentric winding method and to calibrate the switching timing according to speed, prototype motor is manufactured. As a result of experiment, advance angle from 30 degree to 45 degree of sensor position is more proper. So, this results can be used for design of sensor position to improve characteristic of the dual gap AFPM with coreless and slotless.

  • PDF

Development of a Zero Velocity Detectable Sensor Algorithm with Dual Incremental Encoders (정지 속도 검출 가능한 이중 증분 엔코더 센서 알고리즘 개발)

  • Lee, Se-Han;Kim, Byoung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • The output of the encoder is a digital pulse, which is also easy to be connected to a digital controller. There are various angular velocity detecting methods of M, T, and M/T. Each of them has its own properties. There is a common limitation that the angular velocity detection period is strongly dependent on the destination velocity magnitude in case of ultimate low range. They have ultimately long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a zero velocity detectable sensor algorithm with the dual encoder system. The sensor algorithm is able to keep detection period moderately at near zero velocity and even detect zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the algorithm validity.

Efficient Dual-layered Hierarchical Routing Scheme for Wireless Sensor Networks

  • Yoon, Mahn-Suk;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.507-511
    • /
    • 2008
  • Supporting energy efficiency and load balancing in wireless sensor network is the most important issue in devising the hierarchical routing protocols. Recently, the dual layered clustering scheme with GPS was proposed for the supporting of load balancing for cluster heads but there would be many collided messages in the overlapped area between two layers. Thereby, the purpose of this paper is to reduce the collision rate in the overlapped layer by concisely distinguish them with the same number of nodes in them. For the layer partition, this paper uses an equation $x^2+ y^2{\le}(\frac{R}{\sqrt{2\pi}})^2$ to distinguish layers. By using it, the scheme could efficiently distinguish two layers and gets the balanced number of elements in them. Therefore, the proposed routing scheme could prolong the overall network life cycle about 10% compared to the previous two layered clustering scheme.

  • PDF

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF

Dual Mode AMOLED Pixel Circuit

  • Bae, Byung-Seong;Son, Yong-Duck;Jang, Jin;Lee, Ki-Yong;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1082-1085
    • /
    • 2006
  • We proposed dual mode pixel circuit in AMOLED (active matrix organic light emitting device). After light emitting period of OLED, we used it as a photo sensor. We measured photo current of OLED and simulated the proposed pixel circuit to verify it's function of dual mode, that is lighting and sensing.

  • PDF

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

Read-Out Integrated Circuit of Colorimetry-Based Optical Sensor for Eutrophication Analysis (수생태계 부영양화 분석을 위한 비색법 기반의 광학식 센서 신호처리회로(ROIC)구현)

  • Koo, Seong Mo;Jung, Dong Geon;Choi, Young Chan;Kim, Kyung-Kyoo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.270-274
    • /
    • 2020
  • In this study, a read-out integrated circuit (ROIC) that can be applied to a colorimetry-based optical sensor for analyzing total phosphorus and total nitrogen was developed and characterized. The proposed ROIC minimizes the effect on temperature fluctuation, improves sensitivity, and extends the dynamic range by utilizing a dual optical path and feedback control circuit. Using a dual optical path makes it possible to calibrate the output signal of the optical sensor automatically, along with the temperature fluctuation. The calibrated voltage is fed back into the measurement stage; thus, the output current of the measurement is adaptively controlled. As a result, the sensitivity and dynamic range of the proposed ROIC are improved. Finally, a total-phosphorus analysis was conducted by utilizing the ROIC. The ROIC was found to operate stably over a wide temperature range.

Operation of a wide dynamic range CMOS image sensor based on dual sampling mechanism and its SPICE simulation (이중 샘플링 기반의 넓은 동작 범위 CMOS 이미지 센서의 동작 및 시뮬레이션을 통한 특성 분석)

  • Kong, Jae-Sung;Jo, Sung-Hyun;Lee, Soo-Yeun;Choi, Kyung-Hwa;Seo, Sang-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2010
  • In this paper, a dynamic range(DR) extension technique based on a 3-transistor active pixel sensor(APS) and dual image sampling is proposed. The feature of the proposed APS is that the APS uses two or more photodiodes with different sensitivities, such as a high-sensitivity photodiode and a low-sensitivity photodiode. Compared with previously proposed wide DR(WDR) APS, the proposed approach has several advantages, such as no-external equipments or signal processing, no-additional time-requirement for additional charge accumulation, simple operation and adjustable DR extension by controlling parasitic capacitance and sensitivity of two photodiodes. Approximately 16 dB of DR extension was evaluated from the simulation for the situation of 10 times of sensitivity difference and the same size of parasitic capacitance between those two photodiodes.

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.