• 제목/요약/키워드: Dual Phase

Search Result 847, Processing Time 0.024 seconds

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

Effects of Performing Dual Task on Temporospatial Gait Variables in Subjects With Subacute Stroke (아급성기 뇌졸중 환자의 이중 과제 수행이 보행의 시·공간적 변수에 미치는 영향)

  • Jang, Young-Min
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.361-371
    • /
    • 2017
  • Purpose: The purpose of this study was to examine the effects of performing a dual task on gait velocity, temporospatial variables, and symmetry in subjects with subacute stroke. Methods: The study included 14 independent community ambulators with gait velocity of 0.8m/s. The Korean mini-mental state examination, the Berg balance scale, the Trunk impairment scale, and the Fugl-Meyer assessment scale were used to recruit homogeneous subjects. Subjects performed a single task (10m ambulation at a comfortable speed) and a dual task (10m ambulation at a comfortable speed while carrying a water-filled glass). Gait variables were examined with the OptoGait system. Results: The findings of this study were as follows: 1) Gait velocity decreased significantly in the dual-task condition as compared to the single task condition. 2) There were no significant differences between the paretic and non-paretic stances. 3) Paretic swing decreased significantly in the dual-task condition as compared to the single task condition. 4) The non-paretic, double-limb support phase increased significantly in the dual-task condition as compared to the single- task condition. 5) There was no significant difference in temporal symmetry. 6) Non-paretic step length decreased significantly in the dual-task condition as compared to the single-task condition. 7) There was no significant difference in spatial symmetry. Conclusion: Performing dual tasks decreases gait velocity, paretic swing phase, and non-paretic step length, while it increases non-paretic double limb support. In addition, although there is no difference in temporospatial symmetry, there is high inter-subject variability in temporospatial symmetry. Thus, dual tasks should be selected in accordance with the functional level of the hemiplegic patient, and inter-subject variability of the individual should be considered when dual tasks are considered for gait-training of hemiplegic patients.

A Study on the Optimum Design of Charge Pump PLL with Dual Phase Frequency Detectors (두 개의 Frequency Detector를 가지고 있는 Charge Pump PLL 의 최적설계에 관한 연구)

  • Woo, Young-Shin;Jang, Young-Min;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.479-485
    • /
    • 2001
  • In this paper, we introduce a charge pump phase-locked loop (PLL) architecture which employs a precharge phase frequency detector (PFD) and a sequential PFD to achieve a high frequency operation and a fast acquisition. Operation frequency is increased by using the precharge PFD when the phase difference is within $-{\pi}{\sim}{\pi}$ and acquisition time is shortened by using the sequential PFD and the increased charge pump current when the phase difference is larger than ${\pm}{\pi}$. So error detection range of the proposed PLL structure is not limited to $-{\pi}{\sim}{\pi}$ and a high frequency operation and a higher speed lock-up time can be achieved. The proposed PLL was designed using 1.5 ${\mu}m$ CMOS technology with 5V supply voltage to verify the lock in process. The proposed PLL shows successful acquisition for 200 MHz input frequency. On the other hand, the conventional PLL with the sequential PFD cannot operate at up to 160MHz. Moreover, the lock-up time is drastically reduced from 7.0 ${\mu}s\;to\;2.0\;{\mu}s$ only if the loop bandwidth to input frequency ratio is regulated by the divide-by-4 counter during the acquisition process. By virtue of this dual PFDs, the proposed PLL structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

Portable Metamaterial Structure Antenna for Dual-Band and Polarization-Reconfigurability

  • Lee, Changhyeong;Han, Dajung;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • This paper presents the design of a palm-sized metamaterial antenna system having reconfigurable polarization as well as dual-band characteristics. Basically, three antennas are laid by 45 degrees in order and excited by a compact metamaterial dual-band power-divider of the in-phase outputs, and the radiated fields of the antennas are mixed to turn the vector of the polarization to another. The validity of the proposed method is verified by observing the in-phase outputs from the odd-numbered power-dividing device for both 900 MHz and 2.4 GHz, and checking the changeable polarization with the antenna gain over 2 dBi for all the polarizations.

Design and Fabrication of Dual PLL for IMT-2000 Cellular Phone (IMT-2000 단말기용 Dual PLL 설계 및 제작)

  • 이원희;박인식;황치전;이규복;박규호;박종철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.155-158
    • /
    • 1999
  • This paper describe the design and measurements of dual PLL for IMT-2000 cellular phone. As a result, dual PLL was well-operated in the RF frequency ranges of 2300 ~ 2360 MHz and If frequency of 380 MHz. The output power of -4.28 ㏈m, phase noise of -107.66㏈c/Hz at 100KHz frequency offset, lock time of 675.6$mutextrm{s}$ were obtained at 2330MHz. The output power of -4.78 ㏈m, phase noise of -115.28㏈c/Hz were also obtained at 380MHz.

  • PDF

Influence of gravity, locality, and rotation on thermoelastic half-space via dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, Eringen's nonlocal thermoelasticity is constructed to study wave propagation in a rotating two-temperature thermoelastic half-space. The problem is applied in the context of the dual-phase-lag (Dual) model, coupled theory (CD), and Lord-Shulman (L-S) theory. Using suitable non-dimensional fields, the harmonic wave analysis is used to solve the problem. Comparisons are carried with the numerical values predicted in the absence and presence of the gravity field, a nonlocal parameter as well as rotation. The present study is valuable for the analysis of nonlocal thermoelastic problems under the influence of the gravity field, mechanical force, and rotation.

Dual-Band Stop Filter Using Metamaterial TLs (Metamaterial 전송선을 이용한 이중 대역 저지 필터)

  • Oh, Hee-Seok;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.124-128
    • /
    • 2009
  • This raper proposes a dual-bandstop filter, which is based on a metamaterial transmission line using the composite right/left-handed (CRLH) and dual composite right/left-handed (D-CRLH) structures. The metamaterial structure is used for miniaturization and dual-bandstop operation at the TDMB frequency range (195 MHz) and DVB-T/H frequency range (670 MHz). The size of the proposed filter is $30{\times}15\;mm$, and the -10 dB bandstop fractional bandwidth is approximately 73 % and 50 % at each frequency, respectively.

The Effect of The Second Phase Morphology on the Micro And Macro Fracture Behaviour of Dual Phase Steel (鋼 의 微視 및 巨視的 破壞擧動 에 미치는 第二相形態 의 영향)

  • 김정규;송삼홍;이장현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.239-246
    • /
    • 1982
  • The effect of the second phase morphology on the fracture ductility of dual phase steel was studied by means of tensile tests carried out room temperature. In this case the second phase morphology is characterized by two kinds; one is the MEF microstructure in which martensite encapsulated islands of ferrite, the other is the FEM microstructure in which ferrite encapsulated islands of martensite. The fracture ductility is improved by variation of the second phase morphology, but is essentially uneffected in the range of high strength ratio (4.7). Also the variation of ductility is well understood according to the difficulty of cleavage crack formation of the ferrite grain and to the brittleness of the martensitic structure.

Evaluation of Forming Limits of Automotive Muti-phase Steel Sheets (자동차용 다상복합조직강판의 성형한계 평가)

  • Lee, S.Y.;Jeong, J.Y.;Park, S.H.;Kim, S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.195-198
    • /
    • 2009
  • In this study, in order to get the forming limit of AHSS sheet in the negative minor strain region, the shapes of die corner and drawbead are redesigned by employing the Taguchi's design of experiment method and the FEM forming simulation. With the redesigned FLD tool, the forming limit tests of automotive multi-phase(Dual Phase and Complex Phase) steel sheets which induce the normal fractures on the blank are performed.

  • PDF

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF