• Title/Summary/Keyword: Dual Head Gantry

Search Result 6, Processing Time 0.02 seconds

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation (듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.627-632
    • /
    • 2017
  • In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.

A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot (갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계)

  • Kim, Jin-Dae;Cho, Che-Seung;Lee, Hyuk-Jin;Shin, Chan-Bai;Park, Chul-Hu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

Dynamic Behavior Analysis of Driving Part in CHIP MOUNTER (CHIP MOUNTER 구동부의 동적 거동 해석)

  • 박원기;박진무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.471-474
    • /
    • 2001
  • Recently, due to demands of faster speed and extra features for the chip mounters, there has been ever-demanding needs for the basic technology. Until four or five years ago, chip mounters placing 0.3sec/chip were considered to be in the high speed category, but since then it has become a borderline for categorizing high speed machines capable of placing 0.1sec/chip. In this study, in order to analyze the vibration of head generated by the dynamic behavior of x-frame, FEM model is composed and modal analysis is performed to identify the dynamic characteristics of the structure. Those results are compared with the modal test in order to verify the model. In this paper, Several other factors, such as definition of dynamic accuracy, static accuracy and tolerance of the axis settling range, that might affect the dynamic behavior the head are discussed.

  • PDF

The Measurements of Energy and Distribution of Scattered Electrons in Therapeutic X-Ray Beam (치료 방사선 선속(Flux)에 포함된 산란전자의 분포와 에너지 측정)

  • Vahc, Young-Woo;Park, Kyung-Ran;Ohyun Kwon;Lee, Yong-Ha;Kim, Tae-Hong;Kim, Sookil
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Accurate knowledge of the distribution of contamination electrons ( which comes from mainly gantry head by Compton scattering, pair production, and tray: henceforth called leptons ) at the surface and in the first centimeters of tissue is essential for the clinical practice of radiation oncology. Such lepton tends to reduce or eliminate the ‘skin-sparing’ advantage of megavoltage photon beam radiotherapy, This information is needed to prescribe a absorbed dose to a skin volume at a few millimeter depth in high energy therapeutic radiation photon beam All experiments were done with 15 MV photon beam from a dual energy linear accelerator (Clinac 1800, Varian). Field size is defined by ranged from 10.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$. The absorbed dose and distribution of leptons in therapeutic radiation beam (15 MV) are investigated by means of variable blocked beams of 30.0$\times$30.0 $\textrm{cm}^2$ and dose beam profiles partly removed leptons with a copper plate. A numerous leptons mainly are distributed as shape of broad cone in the central photon beam and leptons path length in the water are shorter than 2.5 cm because of the leptons energy having around 3.0 MeV. These results clearly appears that the subtraction of leptons from the total depth dose curve not only lower the absolute dose in the buildup region and surface dose, it also causes a shift of d$_{max}$ to a deeper depth.

  • PDF

Dosimetric Effect on Selectable Optimization Parameters of Volumatric Modulated Arc Therapy (선택적 최적화 변수(Selectable Optimization Parameters)에 따른 부피적조절회전방사선치료(VMAT)의 선량학적 영향)

  • Jung, Jae-Yong;Shin, Yong-Joo;Sohn, Seung-Chang;Kim, Yeon-Rae;Min, Jung-Wan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • The aim of this study is to evaluate plan quality and dose accuracy for Volumetric Modulated Arc Therapy (VMAT) on the TG-119 and is to investigate the effects on variation of the selectable optimization parameters of VMAT. VMAT treatment planning was implemented on a Varian iX linear accelerator with ARIA record and verify system (Varian Mecical System Palo Alto, CA) and Oncentra MasterPlan treatment planning system (Nucletron BV, Veenendaal, Netherlands). Plan quality and dosimetric accuracy were evaluated by effect of varying a number of arc, gantry spacing and delivery time for the test geometries provided in TG-119. Plan quality for the target and OAR was evaluated by the mean value and the standard deviation of the Dose Volume Histograms (DVHs). The ionization chamber and $Delta^{4PT}$ bi-planar diode array were used for the dose evaluation. For treatment planning evaluation, all structure sets closed to the goals in the case of single arc, except for the C-shape (hard), and all structure sets achieved the goals in the case of dual arc, except for C-shape (hard). For the variation of a number of arc, the simple structure such as a prostate did not have the difference between single arc and dual arc, whereas the complex structure such as a head and neck showed a superior result in the case of dual arc. The dose distribution with gantry spacing of $4^{\circ}$ was shown better plan quality than the gantry spacing of $6^{\circ}$, but was similar results compared with gantry spacing of $2^{\circ}$. For the verification of dose accuracy with single arc and dual arc, the mean value of a relative error between measured and calculated value were within 3% and 4% for point dose and confidence limit values, respectively. For the verification on dose accuracy with the gantry intervals of $2^{\circ}$, $4^{\circ}$ and $6^{\circ}$, the mean values of relative error were within 3% and 5% for point dose and confidence limit values, respectively. In the verification of dose distribution with $Delta^{4PT}$ bi-planar diode array, gamma passing rate was $98.72{\pm}1.52%$ and $98.3{\pm}1.5%$ for single arc and dual arc, respectively. The confidence limit values were within 4%. The smaller the gantry spacing, the more accuracy results were shown. In this study, we performed the VMAT QA based on TG-119 procedure, and demonstrated that all structure sets were satisfied with acceptance criteria. And also, the results for the selective optimization variables informed the importance of selection for the suitable variables according to the clinical cases.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.