• Title/Summary/Keyword: Dual Flame

Search Result 48, Processing Time 0.019 seconds

A Study on the Fire Hazard of Transportation Oil (수송기관용 오일의 화재위험성에 관한 연구)

  • Park, Young Ju;Hwang, Me Jung;Lee, Hae Pyeong;Lee, Seung Chul;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.114-120
    • /
    • 2014
  • The purpose of this study is to conduct the study of the combustion and thermal characteristics through transportation oil for the analysis of fire hazard. Transportation oil breaks down into fuels such as diesel for civilian demands, gasoline, DF1(diesel for military), high sulfur diesel(for marine), kerosene and JP1(for aviation), and lubricants like brake fluid, power steering oil, engine oil, and automatic and manual transmission oil. The experiments of flash point, ignition point, flame duration time, heat release rate were carried out using TAG closed cup flash point tester(AFP761), Cleveland open cup auto flash point analyzer(AFP762), KRS-RG-9000 and Dual cone calorimeter. As a result, the fuel's ignition points were lower than lubricants, especially that of gasoline was not conducted as it has below zero one. Gasoline has the highest ignition point of about $600^{\circ}C$, while the other fuels showed $400{\sim}465^{\circ}C$. For flame duration time, lubricants had over 300 seconds, but fuels had less than 300 seconds except high sulfur diesel(350 seconds). Total heat release rate ranged $287{\sim}462kW/m^2$ for lubricants and gasoline showed the highest total heat release rate, $652kW/m^2$.

A Study on Analysis of Characteristics Combustion of Floor Covering Materials (바닥내장재의 연소특성 분석에 관한 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong;Kim, Hyun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we analyzed the combustion characteristics of four different floor covering materials(wood, monorium, laminatedpaper, and varnish-laminated paper) with regard to their ignitibility, thermal characteristics and flame retardancy by using an ignition temperature tester, a dual cone calorimeter, a thermogravimetric analyzer and limited oxygen index, for their fire risk assessment. According to the result, monorium had the lowest ignition temperature of $325^{\circ}C$ and the laminated paper and the varnish-laminated paper promptly ignited before 7s. Further, the wood showed the largest total heat release of $100MJ/m^2$, and the varnish-laminated paper showed the highest peak heat release rate. From the thermogravimetric analysis, it was shown that all specimens underwent rapid weight loss at $300{\sim}400^{\circ}C$. The limit oxygen indices of the laminated paper and the varnish-laminated paper were in the range of 20~21%, while it was 34% for wood. This study enabled us to confirm that wood, laminated paper and varnish-laminated paper have a relatively short ignition time and are easy to burn but they all have low heat release. In contrast, wood showed the lowest fire risk among them and had excellent flame retardancy but with high heat release.

Headspace Analysis for Residual Hexane in Vegetable Oil

  • Oh, Chang-Hwan;Kwon, Yong-Kwan;Jang, Young-Mi;Lee, Dal-Su;Park, Jong-Sei
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2005
  • To enforce the maximum residue limit for residual hexane (0.005 g/kg) in commercially available Korean vegetable oil, convenient and accurate quantification methods were investigated. Using dual surrogate standards, pentane and heptane were dissolved in ethanol, and then added to hexane-tree sunflower oil for setting up the calibration curve. Gas Chromatograph-Flame Ionization Detector with a porous layer open tubular column, indicated good chromatographic separation of hexane from other inhibiting matrix components. The lowest calibration level was $0.5\;{\mu}g/g$, not exceeding a relative standard deviation of 10% (RSD%), and 1.0\;{\mu}g/g$ not exceeding a deviation of 22% RSD% using heptane as an internal standard for the Static headspace analysis by using a headspace auto-sampler and manual injection, respectively. The residual hexane was detected in nine of the samples among 87 vegetable oil samples purchased on the local market.

Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia (가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성)

  • Ryu, Kyunghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

Suppression of Undesirable Sulfurous Aromas of Cruciferous Vegetables with Caraway Sulfhydryl Oxidase (캐러웨이 Sulfhydryl Oxidase를 이용한 십자화과 채소의 함황 불쾌취 억압)

  • Shim, Ki-Hwan;Lindsay, R.C.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.555-561
    • /
    • 1990
  • Aromas of sulfur-containing volatiles from two vegetable varieties of Cruciferae Brassica oleracea and the suppression of undesirable sulfurous aromas of cruciferous vegetables by sulfhydryl oxidase of caraway seeds were examined. Aroma components were separated by gas chromatography equipped with a dual flame photometric detector The volatile sulfides produced from cabbage and broccoli varied. in the relative quantities and rates of production. according to the amount of caraway seeds added and incubation time. The amount of methanethiol and dimethyl disulfide in the cabbage and broccoli with caraway seeds was far less than those in the cabbage and broccoli. Removal of methanethiol and dimethyl disulfide was proportional to the amount of caraway seeds added, and was remarkable with 2.5% aqueous slurries of caraway seeds added.

  • PDF

The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil (저열량 바이오매스 합성가스의 혼소특성)

  • Yoon, Sang-Jun;Kim, Young-Ku;Jeon, Chang-Joon;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.860-865
    • /
    • 2012
  • Although biomass syngas is very low calorific gas, it is utilized by means of dual fuel combustion technology in the fields of industrial furnace and boiler as a substitute oil technology. The basic structure of duel fuel combustion burner is designed so that low caloric gas fuel is supplied around an oil burner in the middle. In the present study, three types of mixing burners were manufactured to conduct performance experiment. Low caloric gas was evenly distributed around the oil burner and the method of changing the angle of gas nozzle was applied. CO generation decreased according to the increase of the amount of air for combustion. In addition, the shapes and colors of flame changed according to the proportions of gas and oil used. Remained flame after combustion was from the lack of atomization at the exit of oil burner. Although it was difficult to maintain the optimum air ratio due to different required air ratio for oil and syngas, stable combustion was able to maintained within excess oxygen concentration of 4.7~8.2%. From this study, it was shown that the oil atomization at the exit of fuel oil nozzle was promoted by the increased rate of syngas combustion and the CO concentration in flue gas lower than only fuel oil combustion.

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.