• Title/Summary/Keyword: Dryout

Search Result 54, Processing Time 0.031 seconds

Flow Boiling Heat Transfer Characteristics of Liquid Nitrogen in Plain and Wire Coil Inserted Tubes (평활관 및 와이어코일을 삽입한 열전달촉진관에서 액체질소의 흐름비등열전달 특성)

  • Hwang Jee-Sang;Yun Rin;Kim Yongchan;Chung Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.927-933
    • /
    • 2005
  • Boiling heat transfer characteristics of liquid nitrogen in a stainless steel plain tube and wire coil inserted tubes were investigated. The test tubes, which had an inner diameter of 10.6 m and a length of 1.65 m, were horizontally located. Five wire coils having different pitch and thickness were inserted into the plain tube. The pitches of the wire coils were 18.4, 27.6, and 36.8 m, and the thickness was 1.5, 2.0, and 2.5 mm respectively. Tests were conducted at a saturation temperature of $-191^{\circ}$, mass fluxes from 58 to 105 kg/$m^2s$, and heat fluxes from 22.5 to 32.7 kw/$m^2$. A direct heating method was used to apply heat to the test section. The boiling heat transfer coefficients of liquid nitrogen were represented as a function of vapor quality, which showed significant drop at the dryout vapor quality. The maximum heat transfer enhancement using the wire coil inserted tubes over the plain tube was $174\%$ for 'Wire 3' having a thickness of 2.5 mm and a pitch of 18.4 mm.

Application of the Macrolayer Dryout Model for the Prediction of Pool Boiling CHF at Inclined Plate

  • Yang, Soo-Hyung;Kim, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.159-159
    • /
    • 1999
  • Application of the macro layer dryout model has been performed to predict CHF at inclined plates. For the identification of the detachment frequency of coalesced bubble, experiments have been performed with high-speed motion analyzer and bubble behaviors at inclined plates have been investigated. Based on the observed bubble behaviors, the detachment frequency of the coalesced bubble is measured and linear relations between detachment frequency and heat flux have been developed. In the case of 60$^{\circ}$ and 90$^{\circ}$ inclined plate, the detachment frequency decreases with the increase of heat flux. However, opposite trend has been identified in $30^{\circ}$ in-clined plate: the detachment frequency increases with the increase of heat flux. Using the cor- relation of macro layer thickness suggested by Haramura & Katto and the extrapolation of the identified linear relations, CHFs at different conditions have been predicted. According to the prediction results, CHF values are well predictable.

  • PDF

An Experimental Study on the Convective Boiling in Inclined Tubes (경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구)

  • 이홍욱;이준식;박군철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Experimental Study on Evaporation Heat Transfer and Oil Effect in Micro-fin Tube Using $CO_2$ (마이크로핀관 내 $CO_2$의 증발 열전달과 오일 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • In this paper, the experimental results on evaporation heat transfer characteristics were reported for a micro-fin tube using $CO_2$. An experimental refrigerant loop had been established to measure the evaporation heat transfer coefficient and pressure drop of $CO_2$. Experiments were conducted for mass fluxes, heat fluxes, saturation temperatures and PAG oil concentrations. With increasing the heat flux and the saturation temperature, the evaporation heat transfer coefficient increased. At the higher mass flux, however, the exit vapor quality of the micro-fin tube was to be lower. The peak of the heat transfer coefficient was shifted toward low quality region. The evaporation pressure drop increased as the mass flux increased and the saturation temperature decreased. As PAG oil concentration increased, the evaporation heat transfer coefficient decreased and the dryout was delayed by oil addition.

Characteristics on Spray Cooling Performance on the Micro-Porous Coated Surfaces (마이크로다공성 발열체 표면에서의 액체분무 냉각성능 특성)

  • Kim Yoon-Ho;Choi Chi-Hwan;Lee Kyu-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2006
  • Experiments on evaporative spray cooling on the square plate heaters with plain or micro-porous coated surfaces were performed in this study. Micro-porous coated surfaces were made by using DOM [Diamond particle, Omegabond 101, Methyl-Ethyl-Keton] method. In case of purely air-jet cooling, the micro-porous coating doesn't affect the cooling capacity. In spray cooling three different flow patterns (complete wetting, evaporative wetting, dryout) are observed on both plain and micro-porous coated surfaces. The effects of various operating conditions, such as water flow rate, particle size, and coating thickness were investigated on the micro-porous coated surfaces. It is found that the level of surface wetting is an important factor to determine the performance of spray cooling. It depends on the balance between absorbed liquid amount by capillary force over porosity and the evaporative amount. The micro-porous coated surface has largest cooling capacity, especially in the evaporative wetting zone. It is found that the effects of liquid flow rate and coating thickness are significant in evaporative wetting zone, but are not in complete wetting and dryout zones.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

2相 流動에서의 熱傳達(II) -Post-Dryout 영역-

  • 이영환
    • Journal of the KSME
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 1984
  • 열전달영역은 임계열류속점(CHF)을 기준으로 pre-CHF 영역과 post-CHF 영역의 두가지로 대 별된다. Post-CHF 영역에 해당하는 열전달에는 천이비등열전달과 막비등열전달이 있으며 천 이비등은 CHF점과 최소 막비등점 사이에서 일어나는 현상으로 핵비등과 막비등이 조합된 열 전달 기구에 해당하고 막비등은 가열표면이 안정된 증기막에 의해 덮여 있는 상태의 열전달 기 구에 속한다. 전고에서는 pre-CHF와 CHF 열전달 영역의 특성을 살펴보았고 본고에서는 천이 비등과 최소막비등온도 및 막비등에서의 열전달 상관식의 특성을 살펴 보고자 한다.

  • PDF

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

Evaporation Heat Transfer Characteristics of CO2 R-22 and R-134a in a Horizontal Smooth Tube (수평원관 내 CO2 R-22 및 R-134a의 증발열전달 특성에 관한 실험적 연구)

  • Yun, Rin;Hwang, Jun-Hyeon;Choi, Young-Don;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.911-918
    • /
    • 2002
  • Evaporation heat transfer coefficients of carbon dioxide($CO_2$), R-22, and R-134a in a horizontal smooth tube were measured and analyzed as a function of heat flux, mass flux, and evaporating temperature. The experiments were carried out by varying heat flux from 10 to 20 $kW/m^2$, mass flux from 170 to 340 $kg/m^2s$, and saturation temperatures of 5 and $10^{\circ}C$. It was found that the heat transfer coefficient of $CO_2$ decreased with a rise of quality due to an earlier liquid-film dryout as compared to R-22 and R-134a. Averaged heat transfer coefficients of $CO_2$ were 22-63% higher than those of R-22 and R-134a at all test conditions. The effects of mass flux and heat flux on averaged heat transfer coefficients were much greater in $CO_2$ than in R-22 and R-134a. When comparing $CO_2$ test results with the correlations in the literature, the existing models yielded large deviations at medium and high qualities. Therefore, a generalized correlation for $CO_2$evaporation heat transfer needs to be developed by including the effects of dryout phenomenon.

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.