• Title/Summary/Keyword: Drying efficiency

Search Result 348, Processing Time 0.025 seconds

A Study on the automation of external collector type solar-dehumidification drying of wood using a personal computer (개인용(個人用)컴퓨터를 이용(利用)한 외부집열판형(外部集熱板型) 제습태양열(除濕太陽熱) 목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.23-30
    • /
    • 1992
  • An experimental external external collector type, solar dehumidification dryer was retrofitted with a simple computer-based control system. Solar, solar-dehumidification, and air-drying of 3cm-thick douglas-fir were carried out to investigate the drying-conditions and characteristics of this system, and to analyze the energy efficiencies of each drying met hods in summer. The drying rate of solar-dehumidification was 12%/day, which was about 2 times and 3 times faster than that of solar-and air-drying, respectively. The amount of diurnal temperature fluctuation inside the solar-dryer was greatly reduced and the energy efficiency was enhanced from 25% to 60% by the dehumidifier.

  • PDF

Effect on Drying Efficiency of the Sewage Sludge (Digested, non digested) according to Polymer dose Ratio - Focus on the NIR and Microwave - (약품 주입비율에 따른 하수 슬러지 형태(소화·비소화)가 건조효율에 미치는 영향 - 근적외선 및 마이크로파를 중심으로 -)

  • Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.245-255
    • /
    • 2021
  • In this study, we evaluated the effect of the type of sewage sludge (digested, non digested) on drying efficiency according to the polymer injection rate. The drying characteristics were shown using a near-infrared ray (NIR) and a microwave. As a result of the drying characteristics with NIR at a polymer dose ratio of 8%, the heating up period is up to 6 minutes after the start of the drying experiment. Afterwards, the constant rate drying period of the digested sludge (A, C and G sites) was 6 minute → 18 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge (B, D, E, F, H, I, J and K sites) showed gradual drying characteristics compared to digested sludge until complete drying (10%). As the polymer dose ratio of 10% and 12%, the heating up period for digested sludge is up to 6 minute after the start of the experiment. Afterwards, the constant rate drying period of the digested sludge was 6 minute → 20 minute, showing a rapid decrease in moisture. On the other hand, the heating up period of non digested sludge was up to 10 minute after the start of the experiment, and the constant rate drying period was 10 minute → 22 minute, which was shorter than digested sludge. As a result of the drying characteristics with microwave at a polymer dose ratio of 8%, 10% and 12%, the constant rate drying period the digested sludge was 4 minute → 20~22 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge of the constant rate drying period was 4 minute → 22~30 minute, which was longer than digested sludge.

Study on The Development and Economic Evaluation of Solar Drying System for Wood Industry (목재산업용(木材産業用) 태양열(太陽熱) 건조장치(乾燥裝置)의 개발(開發)과 경제성분석(經濟性分析)에 관한 연구(硏究))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 1992
  • Experimental external collector type solar lumber dryer of $1m^3$ of maximum capacity with $1.6m^3$ of collector area was designed and constructed. The seasonal performance of solar dryer, including air-conditions, energy efficiency, and drying characteristics of 3cm-thick red pine and douglas-fir lumber was investigated. Also, the economic analysis was carried out. Annual average solar drying rate was about 2 times faster than air-drying rate with no significant difference in the amount of drying defects. But in initial drying stage air-drying rate in winter was much faster and those in spring and autumn were slightly slower than solar drying rate in each season. Annual average energy efficiency of solar-dryer and-collector was 25% and 57%, respectively. Fuel savings were over 50% at 15% of energy inflation rate and the payback period was estimated as 6.10 years at 30% of energy inflation rate.

  • PDF

An Experimental Study on the Drying Characteristics of Automotive Paint Using Heating Panels and Hot Air (가열패널과 열풍을 이용한 자동차용 도료의 건조특성에 관한 실험적 연구)

  • Kim, Sung-Il;Park, Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.828-836
    • /
    • 2010
  • The drying is a process that involves coupled and simultaneous heat and mass transfer. When a wet solid is subjected to thermal drying, two processes occur simultaneously. Drying is classified according to heat transfer characteristics in terms of conduction, convection and radiation. In thermal drying, radiation is easier to control than conduction and convection drying and involves a relatively simple structure. In this study, we measured energy consumption, surface hardness of paint and surface gloss with variation of surface temperature of drying materials and drying time. Drying characteristics and energy consumption between heating panels and hot air heating have been presented. The present study shows that a dryer using heating panels is more effective than a hot air dryer from the viewpoint of energy conservation. The hot air dryer, however, was not optimized and more studies on various parameters related to drying will need to be investigated for definite comparison of drying characteristics of the dryers. The result, even if limited, would present the effective availability of paint drying.

Drying Characteristics of Succinic acid using the Microwave (마이크로파를 이용한 호박산 건조 특성)

  • Kim, Ji Sun;Ryu, Young Bok;Kim, Myung Hwan;Hong, Seong-Soo;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6023-6028
    • /
    • 2013
  • Recently, biodegradable polymers are gaining more and more attention due to international environmental issues. Succinic acid is synthesised by chemical process of hydrogenation. Succinic acid synthesized has certain amount water content. To remove the water contained in succinic acid is used generally by hot air drying process. But recently, microwave drying process having the advantage of shortening the drying time and uniform drying of product are gaining more attention. In this study, hot air drying and microwave drying efficiency were compared at drying process. In addition, we confirmed commercial applicability in microwave drying process of succinic acid. Microwave drying process has higher efficiency than 70% compared with hot air drying process at thickness of 1cm. Economic efficiency were compared through examination of power consumption for complete drying of succinic acid at microwave and hot air dyring.

The Comparative Analysis of Drying-Conditions, -Rates, -Defects and Yield, and Heat-Efficiency in Solar-Dehumidification-Drying of Oaks With Those in Conventional Air-, Semi-Greenhouse Type solar-, and Kiln- Drying (참나무류(類)의 제습태양열건조(除濕太陽熱乾燥)의 조건(條件), 속도(速度), 결함(缺陷), 수율(收率) 및 열효율(熱效率)과 관행(慣行) 천연(天然), 반온실형(半溫室型) 태양열(太陽熱) 및 열기건조(熱氣乾燥)와의 비교(比較)·분석(分析))

  • Lee, Hyoung-Woo;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.22-54
    • /
    • 1989
  • Seasonal semi-greenhouse type solar-drying of 2.5cm-and 5.0cm-thick lumber of Quercus aliena Blume and Quercus variailis Blume was carried out to investigate the possibility of solar-drying of wood and to decide the active solar-drying period in Korea. In the active solar-drying period obtained solar-dehumidification, semi-greenhouse type solar-, air- and kiln-drying of 2.5cm -thick lumber of oaks were carried out to analyze drying-rates. -defects, and -yield in each drying-method and to calculate daily total absorbed solar-radiation the solar dryers. The energy balance equations were set up, considering all the energy requirements, to analyze the heat efficiencies of semi-greenhouse type solar and solar-dehumidification-dryer. In a seasonal drying the drying rate of semi-greenhouse type solar-dryer was highest in summer, and greater in fall, spring, and winter in order. Solar-drying time was 45% in summer to 50% in winter of the air-drying rime, and more serious drying-defects occurred in air-drying than in solar-drying. In the active solar-drying period. April, May, and June, the average drying rate in solar-dehumidification-drying was 1.0%/day and greater than 0.8%/day in semi-greenhouse type solar-drying. In solar-dehumidification-drying the time required to dry lumber to 10% moisture content was less than 60 days, and solar-dehumidification-drying showed the highest drying-yield, 65.01%, than the other drying methods. The daily total absorbed solar radiations were 8.51MJ on the roof collector and 6.22 MJ on the south wall collector. In the energy blance 69.48% of total energy input was lost by heat conduction through walls, roof. and floor 11.68% by heat leakage, 0.33% by heating the internal structures of the solar-dryer and 5.38% by air-venting. Therefore the heat efficiency of semi-greenhouse type solar-dryer 13.13%, was lower than that of solar-dehumidification-dryer, 14.04%. Solar-drying of lumber in Korea showed the possibility to reduce the air-drying-time in every season and the efficiency of solar-dehumidification drying was higher than that of semi-greenhouse type solar-drying.

  • PDF

Experimental Study on the Direct Contact Thermal Screw Drying of Sawdust for Wood-Pellet Fuel

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.23-28
    • /
    • 2007
  • Wood fuel must be dried before combustion to minimize the energy loss. Sawdust of Japanese red pine was dried in a direct contact thermal screw dryer to investigate the drying characteristics of sawdust as a raw material for bio-fuel. Average drying rate and energy efficiency was 1.4%/min and 69.23% at $100^{\circ}C$, respectively, and those at $120^{\circ}C$ was 2.1%/min and 71.03%, respectively.

Development of the Dryer with a Heat Source of Carbon Nanofibers (탄소나노섬유를 열원으로 적용한 세탁물 건조기의 개발)

  • Lee, Jung-Hwan;Won, Sang-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a heating source of carbon nanofibers for the efficiency and the drying performance of laundry dryer, and focuses on the applicability-evaluation of its source. To design the proposed heating module, experiments were conducted in terms of surface temperature and surface temperature distribution characteristics of carbon nanofiber lamps. The surface temperature of the lamps increased linearly with increment of a current to flow a lamp and revealing the increasing pattern as the length of the ramps is shorter. The proposed heating source was evaluated based on drying efficiency, moisture evaporation rate at laundry, and internal temperature of a drum during drying process. The drying efficiency satisfied a 45% which is specified in KS C 9319. The moisture evaporation rate and the internal temperature of the drum were respectively 98.88% and $61.1^{\circ}C$, which are similar to that of S's company dryer. From the evaluation and actual drying test results, the proposed carbon nanofiber lamp heating module is considered to be applicable as a heat source for laundry dryer in terms of drying efficiency and drying performance. it is possible to obtain a heat source at a high temperature, an excellent calorific value, an improvement in drying performance, and an effect of sterilizing laundry due to the emission of far-infrared rays. In addition to the applicability, the difference of the drying efficiency between the dryers was analyzed in detail based on the power consumption of the heat sources.

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.

Economic Evaluation through Thermal Efficiency Elevation in Hot Air Drying Tower (열풍건조로의 열효율 향상을 위한 개선방안 연구)

  • Kim, Dong-Kyu;Kum, Jong-Soo;Kim, Jong-Ryeol;Kim, Sang-Jin;Chung, Yong-Hyun;Kim, Dong-Kyu;Kong, Ki-Bong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.500-507
    • /
    • 2008
  • Hot air drying is a method that let moistures evaporate by heat exchange between heating air and dry target. This way is dominating more than about 70% of dryers that the use extent is wide fairly, and is established in domestic than dryer that use conduction or radiation etc. Most of research about drying had been emphasized in size of device through analysis for these dry phenomenon plain, heating topology, and aspect of form and so on by dry target's special quality, and research about device development or waste heat withdrawal technology in energy utilization efficiency side is slight real condition. Therefore, in this study, Investigated numerically about thermal efficiency elevation that is leaned against as that change the temperature of inlet and outlet in heat exchanger of the hot air drying tower.