• Title/Summary/Keyword: Drying Method

Search Result 1,448, Processing Time 0.028 seconds

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

The Study of Nano-vesicle Coated Powder (나노베시클 표면처리 분체의 개발연구)

  • Son, Hong-Ha;Kwak, Taek-Jong;Kim, Kyung-Seob;Lee, Sang-Min;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.45-51
    • /
    • 2006
  • In the field of makeup cosmetics, especially, powder-based foundations such as two-way cake, pact and face powder, the quality of which is known to be strongly influenced by the properties of powder, surface treatment technology is widely used as a method to improve the various characteristics of powder texture, wear properties, dispersion ability and so on. The two-way cake or pressed-powder foundation is one of the familiar makeup products in Asian market for deep covering and finishing purpose. In spite of the relent progress in surface modification method such as composition of powders with different characteristics and application of a diversity of coating ingredient (metal soap, amino acid, silicone and fluorine), this product possess a technical difficulty to enhance both of the adhesion power and spreadability on the skin in addition to potential claim of consumer about heavy or thick feeling. This article is covering the preparation and coating method of nano-vesicle that mimic the double-layered lipid lamellar structure existing between the corneocytes of the stratum corneum in the skin for the purpose of improving both of two important physical characteristic of two-way cake, spreadability and adhering force to skin, and obtining better affinity to skin. Nano-vesicle was prepared using the high-pressure emulsifying process of lecithin, pseudo ceramide, butylene glycol and tocopheryl acetate. This nano-sized emulsion was added to powder-dispersed aqueous phase together with bivalent metal salt solution and then the filtering and drying procedure was followed to yield the nano-vesicle coated powder. The amount of nano-vesicle coated on the powder was able to regulated by the concentration of metal salt and this novel powder showed the lower friction coefficient, more uniform condition of application and higher adhesive powder comparing with the alkyl silane treated powder from the test result of spreadability and wear properties using friction meter and air jet method. Two-wav cake containing newly developed coated powder with nano-vesicle showed the similar advantages in the frictional and adhesive characteristics.

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Hwang Kyung-Jun;Jung Ha-Yeon;Ko Moon-Suck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).

Comparison of Sampling Methods for On-Farm Use Quick Test Procedure of Soil Nitrate (토양의 질산태질소 현장검정을 위한 시료 채취방법 비교)

  • Kang, Seong-Soo;Kim, Ki-In;Chung, Keun-Yook;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2005
  • The procedure of soil sampling for on-farm quick test of soil nitrate is very important to improve practical application without weighing or drying soil. To improve application of test strip reflectometer as a quick on-farm analytical procedure for the estimation of soil nitrate concentration, three sampling methods such as gravimetric sampling (GS), particle density sampling (PDS) and bulk density sampling (BDS) for on-farm analytical procedure were investigated with twelve soils of 45 to $281mg\;kg^{-1}$ nitrate nitrogen concentration. The nitrate nitrogen concentrations measured from different soils were compared with two analytical methods, ion electrode method as a standard laboratory analysis (SLA) and test strip reflectometer at three moisture conditions, viz. air dried soil, 20 and 40% of maximum water holding capacity (MWHC). Nitrate nitrogen concentration measured by test strip reflectometer was significantly correlated with that of SLA, and the coefficients of variation (CV) were in the range of 3.5 to 10.9%. These CV values less than 10.9% were thought to be acceptable for the measurement of soil nitrate as an on-farm real time analytical procedure. The nitrate nitrogen concentration by BDS for test strip reflectometer as well as ion electrode method was more similar to that of SLA compared with those by GS and PDS especially in case of moist soils. This result suggests that the BDS is more useful than GS and PDS in case of on-farm analytical procedure of soil nitrate for moist soils. Further the practical measurement by BDS could be improved by substituting the bottle cap with a larger container.

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Optimized Processing Condition of Production of Nannochloropsis oculata under Light-emitting Diode (LED) Condition (LED배양조건에서 미세조류 Nannochloropsis oculata의 생산 효율성을 높이는 공정 최적화)

  • Lee, Nam Kyu
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.754-759
    • /
    • 2017
  • The 100 l culture system was made on the basis of LED light, and Nannochloropsis oculata was cultured in f/2 medium at light intensity ($100{\mu}mol/m^2/s$), culture temperature ($20^{\circ}C{\pm}1^{\circ}C$) and LD cycle (12hr). As a result, the maximum biomass of 1.07 g/l was cultured as a result of 100 l mass culture at $100{\mu}mol/m^2/s$ and 24 mg/l nitrate concentration in LED blue (475 nm). The extraction was carried out using sonicator, homogenizer and chemical method 0.5M HCl shredding method. The contents of chlorophyll a, chlorophyll b and carotenoid were 1.6, 0.5 and 0.3 mg/g cell. When using homogenizer, it was measured at 1.0, 0.6 and 0.2 mg/g cell. The chemical breakdown method of 0.5M HCl, chlorophyll a, b, and carotenoid contents were measured as 0.9, 0.8, 0 mg/g cell. The highest amount of biomass during the distruption time was measured at 3.6 mg/g cell at 15 min disintegration and acetone, 3.6 mg/g cell of acetone, methanol, and ethanol were measured as effective solvents. Concentration was measured by using microfilter, disk type continuous centrifuge and tubular type continuous centrifuge were 16.0, 1.1 and 0.5 g/l, respectively. Four kinds of equipment such as hot air dryer, vacuum dryer, spray dryer and freeze dryer were tested to optimize the drying process. As a result, the recovery rates of spray dryer and freeze dryer were 80% and 60%.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.