• Title/Summary/Keyword: Dry-strength

Search Result 1,122, Processing Time 0.027 seconds

Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process (습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가)

  • Koo, Jun-mo;Kim, Kyung Ho;Han, Yoonsoo
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

A study on the development of living products using heat and color conversion treated woods (가열.재색변환처리 목재를 이용한 생활용품개발에 관한 연구)

  • Shin, Rang-Ho;Yoon, Suk-Hyun;Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.457-466
    • /
    • 2009
  • This study was carried out to investigate the physical and mechanical properties of 6 hardwoods before and after heat treatment in an effort to produce the high quality industrial lumber product. The results were as follows. Specific gravities of green woods were in range from 0.90 to 1.10. The specific gravities of never treated woods showed higher than those of the heat treated woods. The shrinkage of heat treated woods when green to air & oven dry was significantly low, compared to never treated woods. The compression strengths parallel to grain of heat treated woods showed higher than those of never treated woods. The moduli of rupture (MOR) of never treated and heat treated woods were $176.4N/mm^2{\sim}102.8N/mm^2$ and $100.1N/mm^2{\sim}61.2N/mm^2$ respectively. MORs of heat treated woods showed lower than those of never treated woods. There was no significant change in the modulus of elasticity (MOE) before and after heat treatment.

  • PDF

Effect of Nano/micro Silica on Electrical Property of Unsaturated Polyester Resin Composites

  • Sharma, Ram Avatar;D'Melo, Dawid;Bhattacharya, Subhendu;Chaudhari, Lokesh;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.31-34
    • /
    • 2012
  • The addition of nano/micro silica into unsaturated polyester resin (UPR) results in the improvement of the electrical properties of Silica-UPR composites. The surface, volume resistivity, dielectric strength, dissipation factor and dry arc resistivity of nano silica-UPR composites were found to improve significantly. The effects of the nano and micro fillers in UPR have been evaluated. They are presented in this paper. To evaluate the electrical properties of the nano & micro composites, all the measurements were done as per the prescribed methods in ASTM. It was observed that the addition of nano silica improves the electrical properties as compared to micro silica. The better dispersion of silica particles in unsaturated polyester resin enhances the electrical properties of silica-UPR composites.

A Study on the Wear Behavior of the Cu-TiB2 Composites (Cu-TiB2 복합재료의 마모거동에 관한 연구)

  • Kim Jung-Nam;Choi Jong-Un;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.61-65
    • /
    • 2005
  • The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

A Study on the Durable Press Finishing of Cotton Fiber Treated with Polycarboxylic Acid (폴리카르복시 산 처리 면섬유의 DP가공에 관한 연구)

  • 이찬민;최철민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.58-67
    • /
    • 1997
  • PTCA(1,2,3-propanetricarboxylic acid) and BTCA(1,2,3-butanetetracarboxylic acid) are selected as new nonformaldehyde agents for ester crosslinking of cotton cellulose to replace the traditional DMDHEU reagent. A goal of this research is to propose unknown ester mechanism of cotton cellulose by PTCA or BTCA using crystal structure model suggested by Meyer and Takahashi. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA or BTCA and different catalysts. They were used with $NaH_2PO_2,\;NaH_2PO_4,\;Na_2HPO_4,\;NaH_2PO_2,\;Na_3PO_4,$ catalysts to produce nonformaldehyde fabric finishes. Treatments were applied to all cotton fabrics using a pad-dry -cure process. The esterfication of cotton treated with BTCA or PTCA was investigated using Fourier transform infrared(FT-IR) spectra and the breaking strength, abrasion retention and discoloration properties were determined to prove the durable finished fabrics. Patterns with respect to abrasion resistance were more complex. Because PTCA and BTCA add-ons were comparable, the data suggest that the more effective catalysts, $NaH_2PO_2$ and mixed phosphate $NaH_2PO_2/NaH_2PO_4$) are effecting either a great number of crosslinks in the cotton or producing crosslinks that differ in actual structure.

  • PDF

Fall-cone testing of different size/shape sands treated with a biopolymer

  • Cabalar, Ali Firat;Demir, Suleyman
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.441-448
    • /
    • 2020
  • This paper presents a study on the undrained shear strength (su) of various sands treated with a biopolymer by employing an extensive series of laboratory fall-cone penetration values covered a range of about 15 mm to 25 mm. In the tests, two sizes (0.15 mm-0.30 mm, and 1.0 mm-2.0 mm) and shapes (rounded, angular) of sand grains, Xanthan gum (XG), and distilled water were used. The XG biopolymer in 0.0%, 1.0%, 2.0%, and 3.0% by dry weight were mixed separately with four different sands, and water. The tests results obtained at the same water content revealed an increase in the su values at different levels with an increase in the XG content. Treating the sands with the XG biopolymer addition was concluded to have a greater efficacy on finer and more angular grains than coarser and more rounded grains in the samples. Overall, the present study indicates that different amount of the XG biopolymer has an important potential to be utilized for increasing the su values of samples with various size/shape of sand grains and water content.

Preparation and Characterization of Chromium Oxide Supported on Zirconia

  • Sohn Jong Rack;Ryu, Sam Gon;Park Man Young;Pae Yeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.605-612
    • /
    • 1992
  • Chromium oxide/zirconia catalysts were prepared by dry impregnation of powdered $Zr(OH)_4$ with ($NH_4$)$_2$CrO$_4$aqueous solution. The characterization of prepared catalysts was performed using FTIR, XPS, XRD and DTA methods, and by the measurement of surface area. The addition of chromium oxide to zirconia shifted the transitions of $ZrO_2$ from amorphous to tetragonal phase and from tetragonal to monoclinic phase to higher temperature due to the strong interaction between chromium oxide and zirconia, and the specific surface area of catalysts increased in proportion to the chromium oxide content. Since the $ZrO_2$ stabilizes supported chromium oxide, chromium oxide was well dispersed on the surface of zirconia, and ${\alpha}$-$Cr_2O_3$ was observed only at the calcination temperature above 1173 K. Upon the addition of only small amount of chromium oxide (1 wt% Cr) to $ZrO_2$, both the acidity and acid strength of catalyst increased remarkably, showing the presence of two kinds of acid sites on the surface of $CrO_x$/$ZrO_4$-Bronsted and Lewis.

A Study on the Change of Heavy Snow Strength by SST in Influence of Continental Polar Air Mass

  • Park, Geon-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • The results of the synoptic meteorological analysis showed that when the cold and dry continental high pressure was extended, heavy snow occurred at dawn when the upper atmosphere cooled. In particular, when the continental high pressure was extended and the upper pressure trough passed through, heavy snow occurred due to the convergence region formed in the west coast area, sometimes in the inland of the Honam area. In addition, it was verified that the changes in the humidity coefficients in the upper and lower layers are important data for the determination of the probability, start/end and intensity of heavy snow. However, when the area was influenced by the middle-latitude low pressure, the heavy snow was influenced by the wind in the lower layer (925 hPa and 850 hPa), the equivalent potential temperature, the convergence field, the moisture convergence and the topography. In Case 2010 (30 December 2010), OSTIA had the best numerical simulation with diverse atmospheric conditions, and the maximum difference in the numerically simulated snowfall between NCEP/NCAR SST and OSTIA was 20 cm. Although there was a regional difference in the snowfall according to the difference in the SST, OSTIA and RTG SST numerical tests, it was not as significant as in the previous results. A higher SST led to the numerical simulation of larger snowfall, and the difference was greatest near Buan in the west coast area.

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Effect of Hydrophobic Surface Coating on Flowability of Ceramic Tile Granule Powders (표면 소수화 처리를 통한 도자타일 과립 분말의 유동 특성)

  • Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung;Hwang, Kwang-Take
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.425-431
    • /
    • 2019
  • Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.